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ABSTRACT

SOLUTIONS OF DYNAMIC EQUATIONS ON TIME SCALES WITH JUMPS

Kayode Daniel Olumoyin

To obtain the solution of first order dynamic equations on time scales with jumps, a good

question to ask is, how many initial conditions will be needed? We shall show that you only

need the initial condition that gives you either the initial position or the initial velocity. The

solution at each left scattered point in the time scale can be obtained analytically. With this

approach we shall write the general form of the solution of a first order dynamic equations

on time scales with jumps. To do this we shall use the Hilger derivative, anti-derivatives,

the Hilger Complex plane, the exponential function and the cylinder transformation. We

shall also use the Marshall Differential Analyzer to obtain the solution of the first order

initial value problem as well as calculate the numerical solution to visualize our analytical

solution.
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Chapter 1

Introduction

1.1 Historical Development of the Differential Analyzer

In the early 19th century when “Calculating Machines” started to influence the way

calculations were done, one branch of Mathematics that was developed by these machines

was Differential Equations (DEs). During those years there were many physical systems

modelled by DEs that fascinated scientists, in mathematics, physics, engineering, chemistry,

biology, economics, etc. Established analytical methods were employed to solve several of

these equations, but, as more complicated equations were considered, analytical solution

methods were in some cases non-existent at that time. For these equations, they used

tedious numerical methods because the use of computers to solve DEs had limitations.

These numerical solution methods gave approximate solutions to the DE, hence the search

for better solution methods led to the breakthrough “Differential Analyzer.” The idea was

first conceived by Lord Kelvin in 1876 when he gave a description of how the integrators,

constructed by his brother James Thomson, could be connected together to solve certain

types of ordinary differential equation.

In 1931, 55 years after the work of Lord Kelvin, Dr Vannevar Bush at the Massachusetts

Institute of Technology (MIT) constructed a machine and called it a “Differential Analyzer.”

It was the first machine designed to solve differential equations. In 1934 at Manchester

University, Dr. Douglas Hartree and his student Arthur Porter were seeking for ways to

solve the differential equations they were working on. On seeing the work Dr Vannevar Bush
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Figure 1.1: Dr. Douglas Hartree and Dr. Arthur Porter working on their differential
analyzer.

was doing, Dr. Hartree and Arthur Porter built a machine similar to Bush”s Figure 1.1.

They used Mecanno components; only for the integrator disc did they use glass. Several

differential analyzers were built afterwards at University of Cambridge by J.E. Lennard-

Jones in 1935 and at University of Toronto in the early 1950s.

Lord Kelvin used the Planimeter (a machine that shares similarity with the differential

analyzer) built by his brother to predict sea tides. Several years later, Dr. Vannevar

Bush used the “differential analyzer” in his work on differential equations related to electric

power networks. Dr. Douglas Hartree, a physicist and an expert in numerical methods

of computation, used the differential analyzer to solve differential equations occurring in

Atomic Theory. Perhaps the most prominent application of the differential analyzer was

during the Second World War to calculate “war related equations” in USA, UK, Britian

and Germany. For instance, the British used it to calculate the ballistic trajectory of the

German V2 rockets. It, however, declined in popularity after the war.

Dr. Bonita A. Lawrence, after seeing a model of the differential analyzer in a London

museum with Dr. Clayton Brooks, conceived the idea of building one herself for the purpose

of using it to teach differential equations to her students at Marshall University. Together

2



Figure 1.2: Dr. Bonita Lawrence posing with “Art” at the Grand Opening.

with her team, comprised of Richard Merritt and Saeed Keshavarzian and advice from

Tim Robinson, they started working on building a Differential Analyzer. First they built

a two-integrator machine they called “Lizzie.” Following the success of Lizzie, they started

working on a four-integrator differential analyzer in May 2007 and by March 13, 2008,

Marshall University had a working four-integrator machine Figure 1.2. At present in her

D.A lab, there are three Differential Analyzers. The third is a two - integrator differential

analyzer, a re-design of Lizzie for classroom use, which some of her students named “D.A.

Vinci.” Dr. Lawrence has taken “Lizzie” and “D.A. Vinci” to several conferences in the US

and in Europe.

It is to be noted that the differential analyzer can only evaluate differential equations

for which initial conditions are known.

1.2 Construction of the Machine

A differential analyzer consists of several shafts and gears interconnected to solve a particular

differential equation. On a chosen scale, the rotation of each shaft represent the change

of some quantity in the given equation. I will give a description of the four-integrator

differential analyzer at Marshall University. This machine, called “Art” in honour of Dr.
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Figure 1.3: Principle of integration

Arthur Porter, has four integrator units arranged parallel to one-another, one input/output

table and one output table. On Art, torque amplification of the shaft from the integrating

wheel is achieved with two polarized circular disc arranged in such a way that their rotations

control the amount of light from a light emitting diode (LED). This signal is sent to the

Motorvator (a microprocessor) and determines how much voltage is sent to an electric

motor. Because this is connected to the shaft from the integrator wheel, the torque on this

shaft is amplified and it can then turn the cross shafts. This process of torque amplification

also make use of an H-bridge to allow for bidirectional motion.

A continuously variable gear can act as an integrating mechanism. So, if a shaft B is

driven by a shaft A at a gear ratio n : 1 (that is B makes n turns for one turn of A), and if

the rotation of the driving shaft A is represented by dx, the corresponding rotation of the

driven shaft B is ndx. Because the shafts are arranged so that the gear ratio n is changing

while the driving shaft rotates, the total rotation of B is the sum of the contributions ndx

which is
ş

n dx [4].

4



1.3 Principle of Integration on “Art”

On Art, the integrator unit is comprised of a vertical wheel that can rotate on an horizontal

axis and a horizontal disc which can rotate about a vertical axis through its centre supported

in a movable carriage Figure 1.3. The wheel rests on the disc and the distance of the point

of contact of the wheel on the disc from the centre of the disc can be varied. Suppose the

point of contact of the wheel and disc is a distance y1 from the centre of the disc, measured

in inches. If the disc rotates through a small fraction of a turn dx1, the wheel will rotate

through y1dx1

a , where a is the radius of the wheel, provided there is no slippage in the plane

of the wheel. Now suppose we fix y1 “ 2a and allow the rod that turns the disc to make

1 turn then the integrator wheel makes 2a˚1
a “ 2 turns. When we allow y1 to constantly

vary the total rotation of the integrator wheel is

ż

y1dx1

a
turns. (1.3.1)

On each integrator unit there are three shafts:

• The motion of the first shaft causes the disc to rotate. These rotations represent the

changes in the variable of integration.

• The motion of the second shaft turns the displacement lead screw and these rotations

represent the integrand.

• The third shaft is driven by the integrator wheel, through the torque amplifier, and

its rotation represent the integral.

Our interest is to rewrite the expression for the rotation of the integrator wheel (1.3.1) in

terms of the rotations of the three integrator shafts. To do this let y be the number of turns

of the integrand shaft required to produce a linear displacement y1 of the wheel from the

centre of the disc; y1 changes as the displacement lead screw turns and moves the carriage
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that holds the disk, so the mathematical relation between y and y1 is given by

y “
y1

P
, (1.3.2)

where P is the pitch of the displacement screw, the axial distance between the threads.

To achieve a displacement of 1 inch, the displacement of our Whitworth type screw makes

32 turns so that P “ 1
32 inches{turns. For instance, 1 inch displacement from the position

of the wheel on the disc is acheived by 32 turns of the displacement lead screw.

On Art there is a reduction gear between the shaft representing the variable of integra-

tion and the disc axle. We call this reduction constant K, which is 2
5 on Art. So if we let

x be the number of turns of the shaft required to produce x1 turns of the disc, then the

mathematical relation between x and x1 is given by

x “
x1

K
. (1.3.3)

Making substitution for x1 and y1 in (1.3.1) and using (1.3.2) and (1.3.3), we obtain the

rotation of the output shaft from an integrator unit as

KP

a

ż

ydx. (1.3.4)

The term a
KP is called the ”integrator constant.”

a

KP
“

p15
16 inchesq

p2
5 turnsqp

1
32 inches{turnsq

“ 75, (1.3.5)

so that the rotations of the output shaft is

1

75

ż

y dx. (1.3.6)

Our goal is to describe the solutions of certain types of dynamic equations on a closed

connected set called a time scale. We will also describe the solutions of these dynamic equa-

tions on a union(s) of connected sets (time scales with jumps). The Marshall Differential

6



Analyzer “Art” will be used to solve these equations on a given connected set and on a

union(s) of connected sets. In the case when our equations are on union(s) of connected

sets, we only need the initial condition that gives us the starting point of our solution.

The starting point after each jump will be given by Art and the use of “The Simple Useful

Formula.” First, we start by reviewing basic results about time scales calculus.

7



Chapter 2

Time Scales Calculus

2.1 Basic Definitions

Time scales calculus was initiated in 1988 by Stefan Hilger. It bridges the gap between

continuous and discrete analysis and expands on both theories [2]. Differential equations

are defined on an interval of the set of real numbers whereas difference equations are defined

on discrete sets. However, some physical systems are modelled by what is called dynamic

equations because they are either differential equations, difference equations or a combi-

nation of both. This means that dynamic equations are defined on connected, discrete or

combination of both types of sets. Hence, time scales calculus provides a generalization of

differential and difference analysis. The following introductory material can be found in [2]

where complete proofs are provided.

Definition 1. A time scale is an arbitrary non - empty closed subset of the real numbers.

Example 1. Examples of time scales include:

• The real numbers R

• The integers Z

• The natural numbers N

• The non - negative integers N0

8



Other examples of time scales are

• r0, 1s

• r0, 1s Y r2, 3s

• the Cantor set.

Non examples of time scales include the set of rational numbers Q, complex numbers

C, and the open interval from 0 to 1 p0, 1q. We denote a general time scales as T. We

are concerned with classifying points in a time scales. To do this, we need operators that

moves us forward or backward, enabling us to jump over the gaps (if there are any) in our

time scale T. Specifically, we are often concerned with moving to the next point or previous

point in the time scale T. Hence we have the definition below.

Definition 2. Let T be a time scale. For t P T, we define the forward jump operator

σ : TÑ T by

σptq :“ infts P T : s ą tu,

while the backward jump operator ρ : TÑ T by

ρptq :“ supts P T : s ă tu.

The forward jump operator gives you the “next” point in your time scale. In some cases,

σptq “ t; this occurs when t is in an interval or when t = sup T. On the other hand, the

backward jump operator gives you the “previous” point in your time scale. In some cases,

ρptq “ t; this happens when t is in an interval or when t = inf T.

We use jump operators to classify points in the time scale. The points are either dense

in the set or have measurable gaps (jumps) between them. If a point t has a jump after

it, that is σptq ą t, we define the point t as right-scattered. Similarly, if that point t has

a jump before it, that is ρptq ă t, we define the point t as left-scattered. Points that are

both left and right scattered are called isolated. In contrast, if there is no discernable jump

between a point t and the next point to t in T, then σptq “ t, and we call t right-dense.

9



Likewise, if there is no discernable jump between a point t and the previous point to t in

T then ρptq “ t, and we call t left-dense. Points that are right-dense and left-dense at the

same time are called dense.

For a discrete set of points, we define the change in position between consecutive points

as µptq :“ σptq ´ t and we call µptq the graininess function. Note that the value of µptq

will always be in the interval r0,8q. The graininess function in a connected interval is also

defined as µptq :“ σptq ´ t but always equal 0.

In order to proceed to the concept of differentiation and integration on a time scale, we

shall define the set Tk, derived from the time scale T as follows: If T has a left-scattered

maximum m, then Tk “ T´ tmu. Else, Tk “ T. In general,

Tk :“

$

’

’

&

’

’

%

TzpρpsupTq, supTs supT ă 8

T supT “ 8.

Lastly, if f : TÑ R is a function, then we define the function fσ : TÑ R by

fσptq “ fpσptqq @ t P T.

Example 2. If we consider the time scales T “ R and T “ Z and classify their points using

the jump operators, we have the following.

(i) If T “ R, then we have for any t P R

σptq “ infts P R : s ą tu “ infpt,8q “ t

Similarly ρptq “ t. Hence every point t P R is dense. The graininess function µ turns out

to be

µptq “ σptq ´ t “ t´ t “ 0 for all t P T.

(ii) If T “ Z, then we have for any t P Z

σptq “ infts P Z : s ą tu “ infpt` 1, t` 2, t` 3, . . . q “ t` 1

10



and similarly ρptq “ t´ 1. Hence every point t P Z is isolated. The graininess function µ in

this case is

µptq “ σptq ´ t “ t` 1´ t “ 1 for all t P T.

2.2 Differentiation

For f : TÑ R be a function, we define the delta or Hilger derivative of f at a point t P Tk

as follows:

Definition 3. (Bohner and Peterson [2]) Assume f : T Ñ R is a function and let t P Tk.

Then we define f∆ptq to be the number (provided it exists) with the property that given any

ε ą 0, there is a neighborhood U of t (i.e., U “ pt´ δ, t` δq XT for some δ ą 0) such that

|rfpσptqq ´ fpsqs ´ f∆ptqrσptq ´ ss| ď ε|σptq ´ s| for all s P U

We call f∆ptq the delta or Hilger derivative of f at t.

The following theorem provides some useful characterizations of delta differentiable func-

tions.

Theorem 3. (Bohner and Peterson [2]) Assume f : TÑ R be a function and t P Tk. Then

we have the following:

1. If f is differentiable at t, then f is continuous at t.

2. If f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆ptq “
fpσptqq ´ fptq

µptq
.

3. If t is right-dense, then f is differentiable at t if and only if the limit

lim
sÑt

fptq ´ fpsq

t´ s

11



exists as a finite number. In this case

f∆ptq “ lim
sÑt

fptq ´ fpsq

t´ s
.

4. If f is differentiable at t, then

fpσptqq “ fptq ` µptqf∆ptq.

Which is usually called the “Simple Useful Formula.”

The following theorem establishes the linearity of the delta derivative, as well as the

product and quotient rules for delta differentiation.

Theorem 4. (Bohner and Peterson [2]) Assume f, g : T Ñ R is differentiable at t P Tk.

Then:

1. The sum f ` g : TÑ R is differentiable at t with

pf ` gq∆ptq “ f∆ptq ` g∆ptq.

2. For any constant α, αf : TÑ R is differentiable at t with

pαfq∆ptq “ αf∆ptq.

3. The product fg : TÑ R is differentiable at t with

pfgq∆ptq “ f∆ptqgptq ` fpσptqqg∆ptq “ fptqg∆ptq ` f∆ptqgpσptqq.

4. If fptqfpσptqq ‰ 0, then 1
f is differentiable at t with

ˆ

1

f

˙∆

ptq “ ´
f∆ptq

fptqfpσptqq
.

12



5. If gptqgpσptqq ‰ 0, then f
g is differentiable at t and

ˆ

f

g

˙∆

ptq “
f∆ptqgptq ´ fptqg∆ptq

gptqgpσptqq
.

If we consider functions of the form, fptq “ pt ´ αqm, and gptq “ 1
pt´αqm for example,

we define their delta derivatives as follows.

Theorem 5. (Bohner and Peterson [2]) Let α be constant and m P N.

1. For f defined by fptq “ pt´ αqm we have

f∆ptq “
m´1
ÿ

v“0

pσptq ´ αqvpt´ αqm´1´v.

2. For g defined by gptq “ 1
pt´αqm we have

g∆ptq “ ´
m´1
ÿ

v“0

1

pσptq ´ αqm´vpt´ αqv`1
,

provided pt´ αqpσptq ´ αq ‰ 0.

Having described what it means for a function to be differentiable at a point t in T, we

are ready to describe the concept of integration.

2.3 Integration

In this section, we will describe classes of functions that are “integrable.” We begin with

the following definitions.

Definition 4. (Bohner and Peterson [2]) A function f : TÑ R is called regulated provided

its right-sided limits exist (finite) at all right-dense points in T and its left-sided limits exist

(finite) at all left-dense points in T.

Definition 5. (Bohner and Peterson [2]) A function f : T Ñ R is called rd-continuous

provided it is continuous at each right-dense point in T and its left-sided limits exist (finite)

13



at all left-dense points in T. The set of rd-continuous functions f : TÑ R is denoted by

Crd “ CrdpTq “ CrdpT,Rq.

Now we have the following theorem that describes the relationship between continuous,

rd-continuous and regulated functions, f , defined on a time scale, T.

Theorem 6. (Bohner and Peterson [2]) Assume f : TÑ R.

1. If f is continuous, then f is rd-continuous.

2. If f is rd-continuous, then f is regulated.

3. The jump operator σ is rd-continuous.

4. If f is regulated or rd-continuous, then so is fσ.

5. Assume f is continuous. If g : T Ñ R is regulated or rd-continuous, then f ˝ g has

that property too.

Next we will define pre-differentiable functions with regions of differentiation D.

Definition 6. (Bohner and Peterson [2]) A continuous function f : T Ñ R is called pre-

differentiable with (region of differentiation) D, provided D Ă Tκ, TκzD is countable and

contains no right-scattered elements of T, and f is differentiable at each t P D.

Now if we have a pre-differentiable function, the next theorem states that it is the

pre-antiderivatives of some regulated function f .

Theorem 7. (Bohner and Peterson [2]) Let f be regulated. Then there exists a function F

which is pre-differentiable with region of differentiation D such that

F∆ptq “ fptq holds for all t P D.

Utilizing the pre-antiderivative of a regulated function f we define the anti-dervative of

f .

14



Definition 7. (Bohner and Peterson [2]) Assume f : TÑ R is a regulated function. Any

function F as in Theorem 7 is called a pre-antiderivative of f . We define the indefinite

integral of a regulated function f by

ż

fptq∆t “ F ptq ` C,

where C is an arbitrary constant and F is a pre-antiderivative of f . We define the Cauchy

integral by
ż s

r
fptq∆t “ F psq ´ F prq for all r, s P T.

A function F : TÑ R is called an antiderivative of f : TÑ R provided

F∆ptq “ fptq holds for all t P Tk.

Next we have a theorem that offers a condition that insures the existence of an an-

tiderivative for a function f .

Theorem 8. (Bohner and Peterson [2]) Every rd-continuous function has an antiderivative.

In partcular if t0 P T, then F defined by

F ptq ”

ż t

t0

fpτq∆τ for t P T

is an antiderivative of f.

Theorem 9. (Bohner and Peterson [2]) if f P Crd and t P Tκ, then

ż σptq

t
fpτq4τ “ µptqfptq.

The following theorem offers us properties of the antiderivative.

Theorem 10. (Bohner and Peterson [2]) If a, b, c P T, α P R, and f, g P Crd, then

1.
şb
a rfptq ` gptqs4t “

şb
a fptq4t`

şb
a gptq4t;

2.
şb
a pαfptqq4t “ α

şb
a fptq4t;

15



3.
şb
a fptq4t “ ´

şa
b fptq4t;

4.
şb
a fptq4t “

şc
a fptq4t`

şb
c fptq4t;

5.
şb
a fpσptqqg

∆ptq4t “ pfgqpbq ´ pfgqpaq ´
şb
a f

∆ptqgptq4t;

6.
şb
a fptqg

∆ptq4t “ pfgqpbq ´ pfgqpaq ´
şb
a f

∆ptqgpσptqq4t;

7.
şa
a fptq4t “ 0;

8. If | fptq |ď gptq on ra, bq, then |
şb
a fptq4t |ď

şb
a gptq4t;

9. If fptq ě 0 for all a ď t ă b, then
şb
a fptq4t ě 0

The following theorem that gives us the antiderivative on some particular time scales.

Theorem 11. (Bohner and Peterson [2]) Let a, b P T and f P Crd

1. If T “ R, then
ż b

a
fptq4t “

ż b

a
fptqdt,

where the integral on the right is the usual Riemann integral from calculus.

2. If ra, bs :“ tt P T : a ď t ď bu consists of only isolated points, then

ż b

a
fptq4t “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ř

tPra,bq µptqfptq if a ă b

0 if a “ b

´
ř

tPrb,aq µptqfptq if a ą b

3. If T “ hZ = thk : k P Zu, where h ą 0, then

ż b

a
fptq4t “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ř

b
h
´1

k“ a
h
fpkhqh if a ă b

0 if a “ b

´
ř

b
h

k“ a
h
´1 fpkhqh if a ą b

16



4. If T “ Z, then

ż b

a
fptq4t “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

řb´1
t“a fptq if a ă b

0 if a “ b

´
řa´1
t“b fptq if a ą b

The improper integral is defined as follows:

Definition 8. (Bohner and Peterson [2]) If a P T, supT “ 8, and f is rd-continuous on

ra,8q, then we define the improper integral by

ż 8

a
fptq4t “ lim

bÑ8

ż b

a
fptq4t

provided this limit exists, and we say that the improper integral converges in this case. If

this limit does not exist, then we say that the improper integral diverges.

The chain rule has two forms in time scales calculus. Both are stated in the following

theorems. The second is due to Christian P :otzsche, who derived it in 1998.

Theorem 12. (Bohner and Peterson [2]) Assume g : R Ñ R is continuous, g : T Ñ R is

delta differentiable on Tκ, and f : R Ñ R is continuously differentiable. Then there exists

c in the real interval rt, σptqs with

pf ˝ gq∆ptq “ f 1pgpcqqg∆ptq. (2.3.1)

Where f 1 is the usual derivative of f .

Theorem 13. (Bohner and Peterson [2]) Let f : RÑ R be continuously differentiable and

suppose g : TÑ R is delta differentiable. Then f ˝ g : TÑ R is delta differentiable and the

formula

pf ˝ gq∆ptq “

"
ż 1

0
f 1
`

gptq ` hµptqg∆ptq
˘

dh

*

g∆ptq

holds.

17



2.4 First Order Linear Equation

We intend to describe the solutions of first order dynamic equations on some selected time

scales. However, to do this we need to have a general form for a first order dynamic equation.

We offer this in the next definition.

Definition 9. (Bohner and Peterson [2]) Suppose f : Tˆ R2 Ñ R. Then the equation

y∆ “ fpt, y, yσq (2.4.1)

is called a first order dynamic equation, sometimes also a differential equation. If

fpt, y, yσq “ f1ptqy ` f2ptq or fpt, y, y
σq “ f1ptqy

σ ` f2ptq

for functions f1 and f2, then (2.4.1) is called a linear equation. A function y : T Ñ R is

called a solution of 2.4.1 on Tκ if

y∆ptq “ fpt, yptq, ypσptqqq is satisfied for all t P Tκ.

The general solution of (2.4.1) is defined to be the set of all solutions of (2.4.1). Given

t0 P T and y0 P R, the problem

y∆ “ fpt, y, yσq, ypt0q “ y0

is called an initial value problem (IVP) and a solution y of (2.4.1) with ypt0q “ y0 is called

a solution of this IVP.

In the next section, we will describe the solution of the first order dynamic equation

y∆ “ pptqyptq with ypt0q “ y0.

We shall call this solution the exponential function. First, we will define the components of

the Hilger Complex Plane.

18



Figure 2.1: Hilger”s Complex Plane

Definition 10. (Bohner and Peterson [2]) For h ą 0 we define Hilger complex numbers,

the Hilger real axis, the Hilger alternating axis, and the Hilger imaginary circle as

Ch “
"

z P C : z ‰ ´
1

h

*

,

Rh “
"

z P Ch : z P R and z ą ´
1

h

*

,

Ah “
"

z P Ch : z P R and z ă ´
1

h

*

,

Ih “
"

z P Ch :

ˇ

ˇ

ˇ

ˇ

z `
1

h

ˇ

ˇ

ˇ

ˇ

“
1

h

*

,

respectively. For h “ 0, let C0 “ C, R0 “ R, I0 “ iR, and A0 “ H

The cylinder transformation is used to describe the exponential function. It maps the

Hilger complex numbers to the strip Zh defined for h ą 0 by

Zh “
!

z P C : ´
π

h
ă Impzq ď

π

h

)

and for h “ 0, Z0 “ C

Definition 11. (Bohner and Peterson [2]) For h ą 0, we define the cylinder transformation

19



Figure 2.2: Hilger”s Complex Numbers

ξh : Ch ÝÑ Zh by

ξhpzq “
1

h
Logp1` zhq, (2.4.2)

where Log is the principal logarithm function. We also define the inverse transformation by

ξ´1
h pzq “

1

h
pezh ´ 1q (2.4.3)

and for h “ 0, we define ξ0pzq “ z for all z in C .

We shall define the generalized exponential function for functions classified as regressive.

Next, we present what it means for a function to be regressive.

Definition 12. (Bohner and Peterson [2]) We say that a function p : T ÝÑ R is regressive

provided

1` µptqpptq ‰ 0 for all t P Tκ (2.4.4)

holds. The set of all regressive and rd-continuous function f : T ÝÑ R will be denoted by

20



R “ RpTq “ RpT,Rq.

Definition 13. (Bohner and Peterson [2]) If p P R, then we define the exponential function

by

eppt, sq “ exp

ˆ
ż t

s
ξµpτqpppτqq∆τ

˙

for s, t P T (2.4.5)

Lemma 14. (Bohner and Peterson [2]) If p P R, then the semigroup property

eppt, rqeppr, sq “ eppt, sq for all r, s, t P T (2.4.6)

is satisfied.

Definition 14. (Bohner and Peterson [2]) If p P R, then the first order linear dynamic

equation

y∆ “ pptqy (2.4.7)

is called regressive.

We are now ready for the theorem that describes the solution of the first order linear

dynamic equation p2.4.7q on a time scale T. The proof, found in [2], is presented with more

details to offer the reader a general structure of a proof on a time scale T.

Theorem 15. (Bohner and Peterson [2]) Suppose y4 “ pptqy is regressive and fix t0 in T.

Then epp., t0q is a solution of the initial value problem

y4 “ pptqy, ypt0q “ 1 on T. (2.4.8)

Proof. Fix t0 and assume y∆ “ pptqy is regressive. First note that

eppt0, t0q “ 1. (2.4.9)

It remains to show that eppt, t0q satisfies the dynamic equation y4 “ pptqy. Fix t P Tκ.

There are two cases:

Case 1. Assume σptq ą t, (t is right scattered).
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For s = t0, eppt, sq is defined as eppt, t0q = exp
´

şt
t0
ξµpτqpppτqq∆τ

¯

for t0, t P T. Now using

Lemma 14 and the inverse transformation (2.4.3), we obtain

e4p pt, t0q “
exp

´

şσptq
t0

ξµpτqpppτqq∆τ
¯

´ exp
´

şt
t0
ξµpτqpppτqq∆τ

¯

µptq

“
exp

´

şt
t0
ξµpτqpppτqq∆τ `

şσptq
t ξµpτqpppτqq∆τ

¯

´ exp
´

şt
t0
ξµpτqpppτqq∆τ

¯

µptq

“

exp
´

şt
t0
ξµpτqpppτqq∆τ

¯

exp
´

şσptq
t ξµpτqpppτqq∆τ

¯

´ exp
´

şt
t0
ξµpτqpppτqq∆τ

¯

µptq

“

´

exp
´

şσptq
t ξµpτqppτq∆τ

¯

´ 1
¯

µptq
eppt, t0q

“

`

expppσptq ´ tqξµptqppptqqq ´ 1
˘

µptq
eppt, t0q

“

`

exppµptqξµptqppptqqq ´ 1
˘

µptq
eppt, t0q

“ ξ´1
µptqpξµptqppptqqq ¨ eppt, t0q

“ pptq ¨ eppt, t0q.

Case 2. Next we assume σptq “ t (t is right dense). If yptq “ eppt, t0q, we want to show that

y4ptq “ pptqyptq.
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From Lemma 14 and for s P T we have that

| yptq ´ ypsq ´ pptqyptqpt´ sq | “ |eppt, t0q ´ epps, t0q ´ pptqeppt, t0qpt´ sq|

“| eppt, t0q | ¨ |1´ epps, tq ´ pptqpt´ sq|

“| eppt, t0q | ¨ | 1´

ż t

s
ξµpτqpppτqq∆τ ´ epps, tq

`

ż t

s
ξµpτqpppτqq∆τ ´ pptqpt´ sq |

ď| eppt, t0q | ¨

ˇ

ˇ

ˇ

ˇ

1´

ż t

s
ξµpτqpppτqq∆τ ´ epps, tq

ˇ

ˇ

ˇ

ˇ

` | eppt, t0q | ¨

ˇ

ˇ

ˇ

ˇ

ż t

s
ξµpτqpppτqq∆τ ´ pptqpt´ sq

ˇ

ˇ

ˇ

ˇ

ď| eppt, t0q | ¨

ˇ

ˇ

ˇ

ˇ

1´

ż t

s
ξµpτqpppτqq∆τ ´ epps, tq

ˇ

ˇ

ˇ

ˇ

` | eppt, t0q | ¨

ˇ

ˇ

ˇ

ˇ

ż t

s

“

ξµpτqpppτqq ´ ξ0ppptqq
‰

∆τ

ˇ

ˇ

ˇ

ˇ

.

Let ε ą 0 be given. We now show that there is a neighborhood U of t so that for s P U

the right hand side of the last inequality is less than ε | t´s | and the proof will be complete.

Since σptq “ t and p P Crd, it follows that

lim
τÑt

ξµpτqpppτqq “ ξ0ppptqq. (2.4.10)

This implies that there is a neighborhood U1 of t such that

ˇ

ˇξµpτqpppτqq ´ ξ0ppptqq
ˇ

ˇ ă
ε

3 | eppt, t0q |
for all τ P U1.

Let s P U1. Then

| eppt, t0q | .

ˇ

ˇ

ˇ

ˇ

ż t

s
rξµpτqpppτqq ´ ξ0ppptqqs∆τ

ˇ

ˇ

ˇ

ˇ

ď
ε

3
|t´ s| . (2.4.11)
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Next, by L”Hôpital”s rule,

lim
zÑ0

1´ z ´ e´z

z
“ 0.

So there is a neighborhood U2 of t so that if s P U2, then

ˇ

ˇ

ˇ

ˇ

ˇ

1´
şt
s ξµpτq ´ epps, tq

şt
s ξµpτqpppτqq∆τ

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε‹, (2.4.12)

where

ε‹ “ min

"

1,
ε

1` 3 | pptqeppt, t0q |

*

.

Let s P U “ U1 X U2. Then

| eppt, t0q | ¨

ˇ

ˇ

ˇ

ˇ

1´

ż t

s
ξµpτqpppτqq∆τ ´ epps, tq

ˇ

ˇ

ˇ

ˇ

ă| eppt, t0q | ¨ε
‹

ˇ

ˇ

ˇ

ˇ

ż t

s
ξµpτqpppτqq∆τ

ˇ

ˇ

ˇ

ˇ

ď| eppt, t0q | ¨ε
‹

"ˇ

ˇ

ˇ

ˇ

ż t

s
rξµpτqpppτqq ´ ξ0ppptqqs∆τ

ˇ

ˇ

ˇ

ˇ

` | pptq | |t´ s|

*

ď| eppt, t0q | ¨

ˇ

ˇ

ˇ

ˇ

ż t

s
rξµpτqpppτqq ´ ξ0ppptqqs∆τ

ˇ

ˇ

ˇ

ˇ

` | eppt, t0q | ε
‹ | pptq || t´ s |

ď
ε

3
| t´ s | ` | eppt, t0q | ε

‹ | pptq || t´ s |

ď
ε

3
| t´ s | `

ε

3
|t´ s|

“
2ε

3
| t´ s |

so that

| yptq ´ ypsq ´ pptqyptqpt´ sq | “
2ε

3
| t´ s | `

ε

3
| t´ s |

“ ε | t´ s | .

And so if yptq “ eppt, t0q then y∆ptq “ pptqyptq, where ypt0q “ 1 on T.

The above theorem confirms the existence of a solution. We will show that this solution

is the only solution of the initial value problem (2.4.8)

Theorem 16. (Bohner and Peterson [2]) If ( 2.4.7) is regressive, then the only solution of

(2.4.8) is given by epp¨, toq.
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Proof. Assume y is a solution of (2.4.8) and consider the quotient y
epp¨,t0q

.

By Theorem 4(5) we have

ˆ

y

epp., t0q

˙4
ptq “

yptq4eppt, t0q ´ yptqe
4
p pt, t0q

eppt, t0qeppσptq, t0q

“
pptqyptqeppt, t0q ´ yptqpptqeppt, t0q

eppt, t0qeppσptq, t0q

“ 0

We know that if f is a pre-differentiable function and f∆ptq “ 0 then f is a constant

function. So yptq
eppt,t0q

is a constant function. Hence yptq
eppt,t0q

”
ypt0q

eppt0,t0q
“ 1

1 and therefore

y “ epp¨, t0q.

2.5 Initial Value Problem

Consider the homogeneous equation,

y∆ “ pptqyptq (2.5.1)

on a time scale T. Our previous discussion gives us the following theorem.

Theorem 17. (Bohner and Peterson [2]) Suppose (2.5.1) is regressive. Let t0 P T and

y0 P R. The unique solution of the initial value problem

y∆ “ pptqyptq, ypt0q “ y0, (2.5.2)

is given by

yptq “ eppt, t0qy0.

If we consider time scales, R, Z, hZ and qN0 and we solve initial value problem (2.5.2)

for these time scales using the exponential function we obtain the following solutions [1]:

Example 18. Let T “ R, then µptq “ 0. If (2.5.1) is regressive, then the solution of the
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IVP y∆ “ pptqyptq, where ypt0q “ 1 by Theorem 17 is

yptq “ eppt, t0q “ e
şt
t0
ξ0pppτqqp∆τq

“ e
şt
t0
ppτq∆τ

,

and

ypt0q “ eppt0, t0q “ e
şt0
t0
ppτqp∆τq

“ 1.

Now if pptq “ a (a constant)

yptq “ eapt, t0q “ e
şt
t0
ap∆τq

“ eapt´t0q

and, if t0 “ 0,

yptq “ eapt, 0q “ e
şt
0 ap∆τq

“ eat.

Thus, if a “ 1,

yptq “ eapt, 0q “ et.

The above result for T “ R is consistent with solving the IVP y1 “ pptqy where yp0q “ 1

and pptq ” a.

Example 19. If T “ Z, then µptq “ 1. And Suppose (2.5.1) is regressive, then the solution

of the IVP ∆yptq “ pptqyptq, where ypt0q “ 1 and ∆yptq “ ypt ` 1q ´ yptq r5s by Theorem

17 and Theorem 11(4) is

yptq “ eppt, t0q “ e
řt´1
τ“t0

ξ1pppτqq.

If t0 ă t,
t´1
ÿ

τ“t0

ξ1pppτqq “
t´1
ÿ

τ“t0

Logp1` ppτqq,
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by the definition of cylinder transformation, and

t´1
ÿ

τ“t0

Logp1` ppτqq “ Log
t´1
ź

τ“t0

p1` ppτqq.

So,

eppt, t0q “ e
Log

śt´1
τ“t0

p1`ppτqq

“

t´1
ź

τ“t0

p1` ppτqq.

If t0 “ t then

eppt, t0q “ eppt, tq “ e0 “ 1.

If t0 ą t then

eppt, t0q “
1

eppt0, tq

“
1

e
řt0´1
τ“t ξ1pppτqq

“
1

e
řt0´1
τ“t Logp1`ppτqq

“
1

eLog
śt0´1
τ“t p1`ppτqq

“
1

śt0´1
τ“t p1` ppτqq

.

Hence,

eppt, t0q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

śt´1
τ“t0

p1` ppτqq when t0 ă t

1 when t0 “ t

1
śt0´1
τ“t p1`ppτqq

when t0 ą t.

Now if pptq “ a (a constant) and a ‰ ´1

eapt, t0q “ p1` aq
t´t0 .
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If t0 “ 0, then

eapt, 0q “ p1` aq
t.

If a “ 1, then

e1pt, 0q “ 2t.

The above result for T “ Z is consistent with solving the difference equation ∆yptq “

ypt` 1q ´ yptq “ pptqypt` 1q.

Example 20. If T “ hZ, where hZ “ thk|k P Zu for some h ą 0 then µptq “ h. And

Suppose (2.5.1) is regressive, then the solution of the IVP ypt`hq´yptq
h “ pptqyptq, where

ypt0q “ 1 by Theorem 17 is

yptq “ eppt, t0q “ e
řt´1
τ“t0

ξhpppτqq.

If t0 ă t,
t´1
ÿ

τ“t0

ξhpppτqq “
t´1
ÿ

τ“t0

1

h
Logp1` ppτqhq,

by the definition of cylinder transformation, and

t´1
ÿ

τ“t0

1

h
Logp1` ppτqhq “

1

h

t´1
ÿ

τ“t0

Logp1` ppτqhq

“
1

h
Log

t´1
ź

τ“t0

p1` ppτqhq

“ Log

«

t´1
ź

τ“t0

p1` ppτqhq

ff
1
h

.

So,

eppt, t0q “ e
Log

”

śt´1
τ“t0

p1`ppτqhq
ı 1
h

“

«

t´1
ź

τ“t0

p1` ppτqhq

ff
1
h

.
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If t0 “ t, then

eppt, t0q “ eppt, tq “ e0 “ 1.

If s ą t, then

eppt, t0q “
1

eppt0, tq

“
1

e
řt0´1
τ“t ξhpppτqq

“
1

e
řt0´1
τ“t

1
h
Logp1`ppτqhq

“
1

e
Log

”

śt0´1
τ“t p1`ppτqhq

ı 1
h

“
1

”

śt0´1
τ“t p1` ppτqhq

ı
1
h

.

Hence,

eppt, t0q “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

”

śt´1
τ“t0

p1` ppτqhq
ı

1
h

when t0 ă t

1 when t0 “ t

1
”

śt0´1
τ“t p1`ppτqhq

ı 1
h

when t0 ą t.

Now, if pptq “ a (a constant) and h “ 1
n for some natural number n P N and a ‰ ´1

eapt, t0q “
´

1`
a

n

¯npt´t0q
.

If t0 “ 0, then

eapt, 0q “
´

1`
a

n

¯nt
.

as nÑ8
´

1`
a

n

¯n
Ñ e

and so

eapt, 0q Ñ et.
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Example 21. If T “ qN0 , where q ą 1 and qN0 “ tqk|k P Nu Y t0u then µptq “ pq ´ 1qt.

And Suppose (2.5.1) is regressive, then the solution of the IVP ypqtq´yptq
pq´1qt “ pptqyptq, where

yp1q “ 1 by Theorem 17 is

yptq “ eppq
k, 1q “

k´1
ź

ν“0

r1` pq ´ 1qqνppqνqs .

If we define p : TÑ R,

pptq “
1´ t

pq ´ 1qt2
for t P T,

then

eppq
k, 1q “

k´1
ź

ν“0

„

1` pq ´ 1qqν
1´ qν

pq ´ 1qq2ν



“

k´1
ź

ν“0

„

1`
1´ qν

pq ´ 1qqν



“

k´1
ź

ν“0

1

qν

“
1

qkpk´1q{2

“ q´
k2

2 ¨ q
k
2

“
a

qk exp

"

´
k2

2
ln q

*

“
a

qk exp

"

´
pk ln qq2

2 ln q

*

so that

eppt, 1q “
?
t exp

"

´
pln tq2

2 ln q

*

.
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To verify,

y∆ “
ypqtq ´ yptq

pq ´ 1qt

“

?
qt exp

!

´
pln qtq2

2 ln q

)

´
?
t exp

!

´
pln tq2

2 ln q

)

pq ´ 1qt

“
q

1
2

?
t exp

!

´
pln tq2`2 ln t ln q`pln qq2

2 ln q

)

´
?
t exp

!

´
pln tq2

2 ln q

)

pq ´ 1qt

“
q

1
2

?
t exp

!

´
pln tq2

2 ln q

)

¨ t´1 ¨ q´
1
2 ´

?
t exp

!

´
pln tq2

2 ln q

)

pq ´ 1qt

“
q

1
2 ¨ t´1 ¨ q´

1
2 ´ 1

pq ´ 1qt

?
t exp

"

´
pln tq2

2 ln q

*

“
t´1 ´ 1

pq ´ 1qt
¨
t

t

?
t exp

"

´
pln tq2

2 ln q

*

“
1´ t

pq ´ 1qt2
¨
?
t exp

"

´
pln tq2

2 ln q

*

“ pptq ¨ yptq.
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Chapter 3

Solutions of First Order Dynamic Equations on Time Scales

with Jumps on “Art”

The solution of the initial value problem (2.5.2) on a time scale T with jumps was first solved

using the Marshall Differential Analyzer “Art” before describing the analytical solution.

However, we did remark in the introduction that the differential analyzer can only solve

differential equations with known initial conditions. Hence, our task is to solve the modified

dynamic equation

y∆ptq “
1

3
yptq, y∆p0q “

1

3
(3.0.1)

on T “ r0, 1s.

3.1 Bush Schematic Diagram

Dr Vannevar Bush developed a way to represent the connections between integrators on

a differential analyzer, which he called the “Bush Schematic Diagram.” In Bush”s

schematic, the rectangular boxes represent the integrators, the circles represents the disc

while the line across the circles represent the wheel. The shaded region attached to each

circle, as seen in Bush”s schematics, represents the carriage on which the disc sits and the

horizontal lines represents the connecting rods. We labeled the first rod the independent

variable and we scaled it to (250t). This means it takes the independent variable rod 250

rotations for a unit of our independent variable t. The motion of this rod rotates the disc.

The second rod, we labeled y∆, which is the integrand; this we scaled as (75y∆). The
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Figure 3.1: Bush Schematic Diagram for y∆ptq “ 1
3yptq

motion on this rod turns the lead screw and it drives the carriage. The motion on the third

rod is as a result of the motion transfered from the disc by friction to the wheel which is

then amplified by our system of torque amplification.

In the Introduction, I discussed how we obtained the “integrator constant” (1.3.5). On

“Art” it takes the independent variable rod 75 rotations for a unit of our independent vari-

able. The counters on each integrator gears the motion up by 10
3 . Therefore 75 rotations

of the independent variable rod is equivalent to 250 rotations of the counter. Hence, the

rotations of the output rod, the third rod as seen in our Bush”s schematic is

1

250

ż

75y∆ dp250tq “ 75yptq.

The 3 to 1 gearing in our Bush Schematic represents the gearing down of the motion of

75yptq by a fraction of 1
3 and so we obtain 25yptq. We complete this connection to the

output rod 25yptq by joining the integrand rod 75y∆, or 75y∆ “ 25y.
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3.2 A sequence of Time Scales with Jumps

To solve (3.0.1) on “Art”, we first chose our time scale T “ r0, 1s. The jumps in the time

scale are created using the sequence below [6];

Ti “
i
ď

k“0

„ˆ

1

2i` 1

˙

p2kq,

ˆ

1

2i` 1

˙

p2k ` 1q



where i “ 1, 2, 3, . . . is the number of jumps.

When there is no jump, we have

T0 “

0
ď

k“0

„ˆ

1

p2ˆ 0q ` 1

˙

p2kq,

ˆ

1

p2ˆ 0q ` 1

˙

p2k ` 1q



“

„ˆ

1

p2ˆ 0q ` 1

˙

p2ˆ 0q,

ˆ

1

p2ˆ 0q ` 1

˙

pp2ˆ 0q ` 1q



“ r0, 1s;

one jump

T1 “

1
ď

k“0

„ˆ

1

p2ˆ 1q ` 1

˙

p2kq,

ˆ

1

p2ˆ 1q ` 1

˙

p2k ` 1q



“

„ˆ

1

p2ˆ 1q ` 1

˙

p2ˆ 0q,

ˆ

1

p2ˆ 1q ` 1

˙

pp2ˆ 0q ` 1q



Y

„ˆ

1

p2ˆ 1q ` 1

˙

p2ˆ 1q,

ˆ

1

p2ˆ 1q ` 1

˙

pp2ˆ 1q ` 1q



“

„

0,
1

3



Y

„

2

3
, 1



;
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two jumps

T2 “

2
ď

k“0

„ˆ

1

p2ˆ 2q ` 1

˙

p2kq,

ˆ

1

p2ˆ 2q ` 1

˙

p2k ` 1q



“

„ˆ

1

p2ˆ 2q ` 1

˙

p2ˆ 0q,

ˆ

1

p2ˆ 2q ` 1

˙

pp2ˆ 0q ` 1q



Y

„ˆ

1

p2ˆ 2q ` 1

˙

p2ˆ 1q,

ˆ

1

p2ˆ 2q ` 1

˙

pp2ˆ 1q ` 1q



Y

„ˆ

1

p2ˆ 2q ` 1

˙

p2ˆ 2q,

ˆ

1

p2ˆ 2q ` 1

˙

pp2ˆ 2q ` 1q



“

„

0,
1

5



Y

„

2

5
,
3

5



Y

„

4

5
, 1



;

and three jumps

T3 “

3
ď

k“0

„ˆ

1

p2ˆ 3q ` 1

˙

p2kq,

ˆ

1

p2ˆ 3q ` 1

˙

p2k ` 1q



“

„ˆ

1

p2ˆ 3q ` 1

˙

p2ˆ 0q,

ˆ

1

p2ˆ 3q ` 1

˙

pp2ˆ 0q ` 1q



Y

„ˆ

1

p2ˆ 3q ` 1

˙

p2ˆ 1q,

ˆ

1

p2ˆ 3q ` 1

˙

pp2ˆ 1q ` 1q



Y

„ˆ

1

p2ˆ 3q ` 1

˙

p2ˆ 2q,

ˆ

1

p2ˆ 3q ` 1

˙

pp2ˆ 2q ` 1q



Y

„ˆ

1

p2ˆ 3q ` 1

˙

p2ˆ 3q,

ˆ

1

p2ˆ 3q ` 1

˙

pp2ˆ 3q ` 1q



“

„

0,
1

7



Y

„

2

7
,
3

7



Y

„

4

7
,
5

7



Y

„

6

7
, 1



.

3.3 Plotting the Solution on “Art”

Here, we shall give a description of how the solution to y∆ptq “ 1
3yptq, with initial condition

y∆p0q “ 1
3 were obtained using “Art.” The Bush schematics (Figure 3.1) was used to set up

the conections of rods to one integrator on “Art.” We used only one integrator because the

equation is of first order. The initial conditions were set using the counters on “Art.” To

initialize the problem, we set the y∆ rod to 1
3 and the y rod to 1. However, on the counters

on “Art”, 1 unit is set to 250 rotations and so 1
3 is denoted by one-third of 250 rotations

which is 83.3̄ rotations.
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(a) (b)

(c) (d)

Figure 3.2: Solution of y∆ “ 1
3y, y∆p0q “ 1

3 on (a )T0. (b) T1. (c) T2. (d) T3 obtained on
“Art”

To obtain the solution of our problem on “Art” over T0 “ r0, 1s, we set the initial

conditions as described above and we plotted the solution from the minimum point in our

time scale 0 to the maximum point 1 Figure 3.2(a).

Next, we want to obtain the solution of our problem when there is one jump in T. By

the sequence of our time scales tTiu, when i “ 1, T1 “ r0,
1
3 s Y r

2
3 , 1s and there is one jump

in T. First, we set the counter on the y∆ rod to 83.3̄ and the counter on the y rod to 250

and then plot the solution up to 1
3 in T. We record the reading on the counters for y∆ rod

and y rod.

We will call y
`

1
3

˘

the counter value on the y rod when t = 1
3 and y∆

`

1
3

˘

the counter

value on the y∆ rod when t = 1
3 .

Now, using the simple useful formula, we calculated what the reading should be on the
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counter for the y rod at t = 2
3 after the jump.

y

ˆ

2

3

˙

“ y

ˆ

1

3

˙

` µ

ˆ

1

3

˙

¨ y∆

ˆ

1

3

˙

“ y

ˆ

1

3

˙

`

ˆ

2

3
´

1

3

˙

¨ y∆

ˆ

1

3

˙

“ y

ˆ

1

3

˙

`

ˆ

1

3

˙

¨ y∆

ˆ

1

3

˙

.

Then we moved the pen horizontally to the point 2
3 and set the position for the y rod to

the value obtained by the simple useful formula using the counter. This moves the pen up

vertically. Using the equation y∆ptq “ 1
3yptq and plugging in the new y rod counter value

for yptq, we find the new y∆ rod counter value,

y∆

ˆ

2

3

˙

“
1

3
y

ˆ

2

3

˙

.

We then positioned the y∆ rod to this value using the counter and then resumed our solution

plot from 2
3 up to 1. Figure 3.2(b)

We moved the pen from 1
3 to 2

3 because in our time scale, 1
3 is a left dense and right

scattered point and we need the jump operator to move to 2
3 .

Now, to obtain the solution of our problem when there are two jumps in T. By the

sequence of our time scale tTiu, when i “ 2, T2 “ r0, 1
5 s Y r

2
5 ,

3
5 s Y r

4
5 , 1s, there are two

jumps in T. Just like we did previously, we set the counter on the y∆ rod to 83.3̄ and the

counter on the y rod to 250 and then plotted the solution up to 1
5 in T. We recorded the

reading on the counters for y∆ rod and y rod.

Here we will also call y
`

1
5

˘

the counter value on the y rod when t = 1
5 and y∆

`

1
5

˘

the

counter value on the y∆ rod when t = 1
5 .

Now, using the simple useful formula, we calculate what the reading should be on the
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counter for the y rod at t = 2
5 after the first jump.

y

ˆ

2

5

˙

“ y

ˆ

1

5

˙

` µ

ˆ

1

5

˙

¨ y∆

ˆ

1

5

˙

“ y

ˆ

1

5

˙

`

ˆ

2

5
´

1

5

˙

¨ y∆

ˆ

1

5

˙

“ y

ˆ

1

5

˙

`

ˆ

1

5

˙

¨ y∆

ˆ

1

5

˙

.

Then we moved the pen horizontally to the point 2
5 and set the position for the y rod to

the value obtained by the simple useful formula using the counter. This moves the pen up

vertically. Using the equation y∆ptq “ 1
3yptq and plugging in the new y rod counter value

for yptq, we find the new y∆ rod counter value,

y∆

ˆ

2

5

˙

“
1

3
y

ˆ

2

5

˙

.

We then positioned the y∆ rod to this value and then resumed our solution plot from 2
5 up

to 3
5 . We record again the reading on the counters for y∆ rod and y rod and we call y

`

3
5

˘

the counter value on the y rod when t = 3
5 and y∆

`

3
5

˘

the counter value on the y∆ rod

when t = 3
5 .

Now, using the simple useful formula, we calculated what the reading should be on the

counter for the y rod at t = 4
5 after the second jump,

y

ˆ

4

5

˙

“ y

ˆ

3

5

˙

` µ

ˆ

3

5

˙

¨ y∆

ˆ

3

5

˙

“ y

ˆ

4

5

˙

`

ˆ

4

5
´

3

5

˙

¨ y∆

ˆ

3

5

˙

“ y

ˆ

4

5

˙

`

ˆ

1

5

˙

¨ y∆

ˆ

4

5

˙

.

We also moved the pen horizontally to the point 4
5 and set the position for the y rod to

the value obtained by the simple useful formula using the counter. This moves the pen up

vertically. Using the equation y∆ptq “ 1
3yptq and plugging in the new y rod counter value
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for yptq, we find the new y∆ rod counter value,

y∆

ˆ

4

5

˙

“
1

3
y

ˆ

4

5

˙

.

We then positioned on the y∆ rod to this value and then resume our solution plot from 4
5

up to 1 Figure 3.2(c).

We repeat this process to obtain the solution plot on T3 “ r0, 1
7 s Y r

2
7 ,

3
7 s Y r

4
7 ,

5
7 s Y r

6
71s

Figure 3.2(d) when i “ 3 in our sequence of time scales tTiu. There are three jumps in T3.

We note that we only need one initial condition, “Art” and the simple useful formula gives

us the starting point at each left scattered point in tTiu
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Chapter 4

Analytical Solutions of Dynamic Equations on a Time Scale

with Jumps

4.1 First Order Dynamic Equations with Jumps

We will describe the solution of the first order homogenenous dynamic equation (2.5.1),

ypt0q “ y0, on a time scale T with jumps. First, we state a theorem that describes the

solution when there is one jump in our time scale T. Next, we will extend our result to

when there are two jumps in T and hence, generalize our result to when there are jumps in

T.

Theorem 22. Assume y4 “ pptqy is regressive and fix t0 in T. With initial condition

ypt0q “ y0 on T, where T “ rt0, t1s Y rt2, t3s

t0 t1 t2 t3

Then the unique solution of the initial value problem

y4 “ pptqy, ypt0q “ y0 on T (4.1.1)

is given by

yptq “

$

’

’

&

’

’

%

y0e
şt
t0
ppτqdτ

, t0 ď t ď t1

p1` ppt1qµpt1qq y0e
şt1
t0
ppτqdτe

şt
t2
ppτqdτ

, t2 ď t ď t3.
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Proof. We will construct the solution using two approaches:

Approach 1 :

Consider t P rt0, t1s. Then the first order dynamic equation

y4 “ pptqy, ypt0q “ y0 on rt0, t1s

reduces to a differential equation

y1 “ pptqy, ypt0q “ y0 on rt0, t1s

whose solution is given by

yptq “ y0e
şt
t0
ppτqdτ

for t P rt0, t1s

Now, for t P rt2, t3s, the first order dynamic equation

y4 “ pptqy, ypt0q “ y0 on rt2, t3s

reduces to a differential equation

y1 “ pptqy, ypt0q “ y0 on rt2, t3s

and the solution is given by

yptq “ ypt2qe
şt
t2
ppτqdτ

for t P rt2, t3s . (4.1.2)

There is a jump between t1 and t2 and by the definition of the forward jump operator,
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ypt2q “ ypσpt1qq and using Theorem 3 part (4), we have

ypt2q “ ypσpt1qq “ ypt1q ` µpt1qy
1pt1q

“ y0e
şt1
t0
ppτqdτ

` µpt1qppt1qypt1q

“ y0e
şt1
t0
ppτqdτ

` µpt1qppt1qy0e
şt1
t0
ppτqdτ

“ p1` ppt1qµpt1qq y0e
şt1
t0
ppτqdτ .

So that (4.1.2) becomes

yptq “ p1` ppt1qµpt1qq y0e
şt1
t0
ppτq4τe

şt
t2
ppτq4τ

for t P rt2, t3s

yptq “

$

’

’

&

’

’

%

y0e
şt
t0
ppτqdτ

, t0 ď t ď t1

p1` ppt1qµpt1qq y0e
şt1
t0
ppτqdτe

şt
t2
ppτqdτ

, t2 ď t ď t3.

Approach 2

For t P rt0, t1s, we use the definition of the exponential function, epp., t0q (2.4.5), and the

cylinder transformation (2.4.2) to obtain

eppt, t0q “ ce
şt
t0
ξµpτqpppτqq∆τ for some arbitrary constant c

“ ce
şt
t0
ξ0pppτqq∆τ since µpτq “ 0 for τ P rt0, t1s

“ ce
şt
t0
ppτqdτ

since ξ0pppτqq “ ppτq

and

eppt0, t0q “ ce
şt0
t0
ppτqdτ

“ ce0 “ y0.

Hence

eppt, t0q “ y0e
şt
t0
ppτqdτ

for t P rt0, t1s .

42



Now, for t P rt2, t3s, we also use the definition of the exponential function, eppt, t0q (2.4.5),

and the cylinder transformation (2.4.2).

Starting at t “ t2, we obtain

eppt2, t0q “ e
şt2
t0
ξµpτqpppτqq∆τ

“ e
şt1
t0
ξµpτqpppτqq∆τe

şt2
t1
ξµpτqpppτqq∆τ

“ e
şt1
t0
ξ0pppτqq∆τe

şt2
t1
ξµpt1qpppτqq∆τ

“ y0e
şt1
t0
pppτqqdτe

şt2
t1

1
µpτq

logp1`ppτqµpτqq∆τ

“ y0e
şt1
t0
pppτqqdτe

t2´t1
µpt1q

logp1`ppt1qµpt1qq

“ p1` ppt1qµpt1qq y0e
şt1
t0
pppτqqdτ .

So for t P rt2, t3s, the exponential function has the form,

eppt, t0q “ e
şt
t0
ξµpτqpppτqq∆τ for t P rt2, t3s

“ e
şt2
t0
ξµpτqpppτqq∆τe

şt
t2
ξµpτqpppτqq∆τ

“ p1` ppt1qµpt1qq y0e
şt1
t0
pppτqqdτe

şt
t2
pppτqqdτ

.

Adding one more jump to T in Theorem 22 we have the following corollary

Corollary 23. Assume y4 “ pptqy is regressive and fix t0 in T. With initial condition

ypt0q “ y0 on T, where T “ rt0, t1s Y rt2, t3s Y rt4, t5s

t0 t1 t2 t3 t4 t5

Then µpt1q “ t2 ´ t1 and µpt3q “ t4 ´ t3 and the solution of the initial value problem

y4 “ pptqy, ypt0q “ y0 on T (4.1.3)
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is given by

yptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

y0 e
şt
t0
ppτqdτ

, t0 ď t ď t1

p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt
t2
ppτqdτ

, t2 ď t ď t3

p1` ppt1qµpt1qq p1` ppt3qµpt3qq y0 e
şt1
t0
ppτqdτe

şt3
t2
ppτqdτe

şt
t4
ppτqdτ

, t4 ď t ď t5.

Proof. We can construct a similar proof as was presented in Theorem 22 above.

Now if we extend the above result to n jumps in T, then we have the following theorem.

Theorem 24. Assume y4 “ pptqy is regressive and fix t0 in T, with initial condition

ypt0q “ y0 on T, where T “ rt0, t1sY rt2, t3sY rt4, t5sY . . .Yrt2n, t2n`1s and t2n`1 ” η is the

maxtPTttu (n jumps).

t0 t1 t2 t3 t4 t5 ¨ ¨ ¨ t2n t2n`1

Then

µpt1q “ t2 ´ t1, µpt3q “ t4 ´ t3, µpt5q “ t6 ´ t5, . . . µpt2n´1q “ t2n ´ t2n´1,

and the solution, yptq, of the initial value problem

y4 “ pptqy, ypt0q “ y0 on T (4.1.4)

is given by

yptq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

y0 e
şt
t0
ppτqdτ

, t0 ď t ď t1

p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt
t2
ppτqdτ

, t2 ď t ď t3

p1` ppt1qµpt1qq p1` ppt3qµpt3qq y0 e
şt1
t0
ppτqdτe

şt3
t2
ppτqdτe

şt
t4
ppτqdτ

, t4 ď t ď t5

...
...

ˆ

śn´1
i“0 p1` ppt2i`1qµpt2i`1qq y0 e

şt2i`1
t2i

ppτqdτ

˙

e
şt
t2n

ppτqdτ
, t2n ď t ď t2n`1.
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Proof. We will prove by induction. The case of one jump has been verified in Theorem 22.

Now let us assume that for k jumps,

yptq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

y0 e
şt
t0
ppτqdτ

, t0 ď t ď t1

p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt
t2
ppτqdτ

, t2 ď t ď t3

p1` ppt1qµpt1qq p1` ppt3qµpt3qq y0 e
şt1
t0
ppτqdτe

şt3
t2
ppτqdτe

şt
t4
ppτqdτ

, t4 ď t ď t5

...
...

ˆ

śk´1
i“0 p1` ppt2i`1qµpt2i`1qq y0 e

şt2i`1
t2i

ppτqdτ

˙

e
şt
t2k

ppτqdτ
, t2k ď t ď t2k`1.

We shall now show for pk ` 1q jumps.

Where t2k`1 is the end point in our sequence. We shall call this end point η. Without loss

of generality, we will sub-divide our last interval rt2k, t2k`1s and define a new sequence

ti “ t̃i, for i “ 0, 1, . . . , t2k.

Let t̃2k`1, t̃2pk`1q P pt2k, t2k`1q, and

η “ t̃2pk`1q`1 “ t2k`1.

Now for t P
“

t̃2k, t̃2k`1

‰

the solution of the first order dynamic equation is

˜

k´1
ź

i“0

p1` ppt2i`1qµpt2i`1qq y0 e
şt2i`1
t2i

ppτqdτ

¸

e
şt
t̃2k

ppτqdτ
.

Now for
“

t̃2pk`1q, t̃2pk`1q`1

‰

the solution is given by

yptq “ ypt̃2pk`1qqe

şt
t̃2pk`1q

ppτqdτ
for t P

“

t̃2pk`1q, t̃2pk`1q`1

‰

(4.1.5)
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Using Theorem 3 part 4, we have

ypt̃2pk`1qq “ ypσpt̃2k`1qq “ ypt̃2k`1q ` µpt̃2k`1qy
∆pt̃2k`1q

“

˜

k´1
ź

i“0

p1` ppt2i`1qµpt2i`1qq y0 e
şt2i`1
t2i

ppτqdτ

¸

e
şt̃2k`1
t2k

ppτqdτ
` µpt̃2k`1qppt̃2k`1qypt̃2k`1q

“

˜

k´1
ź

i“0

p1` ppt2i`1qµpt2i`1qq y0 e
şt2i`1
t2i

ppτqdτ

¸

e
şt̃2k`1
t2k

ppτqdτ

` µpt̃2k`1qppt̃2k`1q

˜

k´1
ź

i“0

p1` ppt2i`1qµpt2i`1qq y0 e
şt2i`1
t2i

ppτqdτ

¸

e
şt̃2k`1
t2k

ppτqdτ

“
`

1` ppt̃2k`1qµpt̃2k`1q
˘

˜

k´1
ź

i“0

p1` ppt2i`1qµpt2i`1qq y0 e
şt2i`1
t2i

ppτqdτ

¸

e
şt̃2k`1
t2k

ppτqdτ

“

˜

k
ź

i“0

`

1` ppt̃2i`1qµpt̃2i`1q
˘

y0 e
şt̃2i`1
t̃2i

ppτqdτ

¸

.

So that (4.1.5) becomes

yptq “

˜

k
ź

i“0

`

1` ppt̃2i`1qµpt̃2i`1q
˘

y0 e
şt̃2i`1
t̃2i

ppτqdτ

¸

e

şt
t̃2pk`1q

ppτqdτ

for t P
“

t̃2pk`1q, t2pk`1q

‰

.

4.2 Solution of First Order Dynamic Equation using Heaviside Function

The solution of the IVP (4.1.1) when there are jumps in the time scale is a collection of

piecewise functions on T. However, we can use an Heaviside function to collect all the

component functions.

Definition 15. An Heaviside function is defined as follows,

Upt´ aq “

$

’

’

&

’

’

%

0, 0 ď t ă a

1, a ď t

Where it is understood that multiplying any function fptq by Upt´ aq means that fptq

is “turned off” before t “ a and “turned on” starting at t “ a. We can rewrite the piecewise
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functions that define the solutions in Theorem 22, Corollary 23, and Theorem 24 as a

collection of component functions that are being “turned on” and “turned off” at different

points. Hence, we state the following corollaries.

Corollary 25. For t0 P T, t0 ě 0, the exponential function in Theorem 22 can be written

as a collection of component functions using the Heaviside function as

eppt, t0q “ y0 e
şt
t0
ppτqdτUpt´ t0q ´ y0 e

şt
t0
ppτqdτUpt´ t2q

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt
t2
ppτqdτUpt´ t2q

where T “ rt0, t1s Y rt2, t3s.

In the above corollary, at t “ t0,

eppt0, t0q “ y0 e
şt0
t0
ppτqdτUpt0 ´ t0q ´ y0 e

şt0
t0
ppτqdτUpt0 ´ t2q

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt0
t2
ppτq4τUpt0 ´ t2q

“ y0 e
şt0
t0
ppτqdτ

ˆ 1´ y0 e
şt0
t0
ppτqdτ

ˆ 0

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt0
t2
ppτqdτ

ˆ 0

“ y0.

At t “ t1,

eppt1, t0q “ y0 e
şt1
t0
ppτqdτUpt1 ´ t0q ´ y0 e

şt1
t0
ppτqdτUpt1 ´ t2q

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt1
t2
ppτqdτUpt1 ´ t2q

“ y0 e
şt1
t0
ppτqdτ

ˆ 1´ y0 e
şt1
t0
ppτqdτ

ˆ 0

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt1
t2
ppτqdτ

ˆ 0

“ y0 e
şt1
t0
ppτqdτ .

So that we can write

eppt, t0q “ y0 e
şt
t0
ppτqdτ

@ t P rt0, t1s .
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At t “ t2,

eppt2, t0q “ y0 e
şt2
t0
ppτqdτUpt2 ´ t0q ´ y0 e

şt2
t0
ppτqdτUpt2 ´ t2q

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt2
t2
ppτqdτUpt2 ´ t2q

“ y0 e
şt2
t0
ppτqdτ

ˆ 1´ y0 e
şt2
t0
ppτqdτ

ˆ 1

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt2
t2
ppτqdτ

ˆ 1

“ p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτ ,

and at t “ t3,

eppt3, t0q “ y0 e
şt3
t0
ppτqdτUpt3 ´ t0q ´ y0 e

şt3
t0
ppτqdτUpt3 ´ t2q

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt3
t2
ppτqdτUpt3 ´ t2q

“ y0 e
şt3
t0
ppτqdτ

ˆ 1´ y0 e
şt3
t0
ppτqdτ

ˆ 1

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt3
t2
ppτqdτ

ˆ 1

“ p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt3
t2
ppτqdτ .

So that we can write

eppt, t0q “ p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt
t2
ppτqdτ

@ t P rt2, t3s .

We have similar results for Corollary 23 and Theorem 24.

Corollary 26. For t0 P T, t0 ě 0, the exponential function in Corollary 23 can be written

as a collection of component functions using the Heaviside function as

eppt, t0q “ y0 e
şt
t0
ppτqdτUpt´ t0q ´ y0 e

şt
t0
ppτqdτUpt´ t2q

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt
t2
ppτqdτUpt´ t2q

´ p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt
t2
ppτqdτUpt´ t4q

` p1` ppt1qµpt1qq p1` ppt3qµpt3qq y0 e
şt1
t0
ppτqdτe

şt3
t2
ppτqdτe

şt
t4
ppτqdτUpt´ t4q,
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where T “ rt0, t1s Y rt2, t3s Y rt4, t5s

Corollary 27. For t0 P T, t0 ě 0, the exponential function in Theorem 24 can be written

as a collection of component functions using the Heaviside function as

eppt, t0q “ y0 e
şt
t0
ppτqdτUpt´ t0q ´ y0 e

şt
t0
ppτqdτUpt´ t2q

` p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt
t2
ppτqdτUpt´ t2q

´ p1` ppt1qµpt1qq y0 e
şt1
t0
ppτqdτe

şt
t2
ppτqdτUpt´ t4q

` p1` ppt1qµpt1qq p1` ppt3qµpt3qq y0 e
şt1
t0
ppτqdτe

şt3
t2
ppτqdτe

şt
t4
ppτqdτUpt´ t4q

´ . . .´

˜

n´2
ź

i“0

p1` ppt2i`1qµpt2i`1qq y0 e
şt2i`1
t2i

ppτqdτ

¸

e
şt
t2n´2

ppτqdτUpt´ t2n´2q

`

˜

n´1
ź

i“0

p1` ppt2i`1qµpt2i`1qq y0 e
şt2i`1
t2i

ppτqdτ

¸

e
şt
t2n

ppτqdτUpt´ t2nq,

where T “ rt0, t1s Y rt2, t3s Y rt4, t5s Y . . .Y rt2n, t2n`1s (n jumps).

4.3 First Order Dynamic Equation with Uniform Jump(s)

In Section 4.1, we had Theorem 24 which gave us the solution of the first order homoge-

nenous dynamic equation (2.5.1), ypt0q “ y0 on a time scale T when there are jumps in T.

We state the next theorem for the special case when the jumps in T have the same size.

Theorem 28 (Uniform jump(s)). Assume y4 “ pptqy is regressive with initial conditions

yp0q “ 1 on T, where

T “
n
ď

i“0

r2ih, p2i` 1qhs , i P N0 and pnjumpsq

“ r0, hs Y r2h, 3hs Y r4h, 5hs Y ¨ ¨ ¨ Y r2nh, p2n` 1qhs pnjumpsq.

with h ą 0.

Then the solution eppt, 0q of the initial value problem

y4 “ pptqy, yp0q “ 1 on T (4.3.1)
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is given by

eppt, 0q “

˜

i´1
ź

j“0

p1` hppp2j ` 1qhqq e
şp2j`1qh
2jh ppτq4τ

¸

´

e
şt
2ih ppτq4τ

¯

, t P r2ih, p2i` 1qhs

(4.3.2)

for i P N0

Proof. Let T “
Ťn
i“0 r2ih, p2i` 1qhs be a time scale with uniform jumps, and y4 “ pptqy

be regressive with initial condition yp0q “ 1. By Theorem 17, yptq “ eppt, 0q, where yptq is

the solution of the initial value problem y∆ptq “ pptqyptq, yp0q “ 1.

If n “ 0 (no jump in T), T “ r0, hs and

yptq “ eppt, 0q “ e
şh
0 ppτq∆τ on t P r0, hs.

Next, if n “ 1 (one jump in T), T “ r0, hs Y r2h, 3hs. Note that the magnitude of the jump

is h. Using Theorem 24

yptq “ eppt, 0q “ p1` hpphqqe
şh
0 pphq∆τe

şt
2h ppτq∆τ on t P r2h, 3hs.

Next, if n “ 2 (two jumps in T), T “ r0, hs Y r2h, 3hs Y r4h, 5hs. Using Theorem 24 also

yptq “ eppt, 0q “ p1` hpphqqp1` hpp3hqqe
şh
0 ppτq∆τe

ş3h
2h ppτq∆τe

şt
4h ppτq∆τ

“

˜

2´1
ź

j“0

p1` hppp2j ` 1qhqqe
şp2j`1qh
2jh ppτq∆τ

¸

e
şt
4h ppτq∆τ on t P r4h, 5hs.

Now, proceeding by induction, we assume that for n “ k (k jumps in T),

yptq “ eppt, 0q “

˜

k´1
ź

j“0

p1` hppp2j ` 1qhqqe
şp2j`1qh
2jh ppτq∆τ

¸

e
şt
2kh ppτq∆τ on t P r2kh, p2k ` 1qhs

We will now show for n “ k ` 1 (k ` 1 jumps in T). The first order dynamic equation

y∆ “ pptqy, where t P rpp2k ` 1q ` 1qh, pp2k ` 1q ` 2qhs has solution given by

yptq “ yppp2k ` 1q ` 1qhqe
şt
pp2k`1q`1qh ppτq4τ , t P rpp2k ` 1q ` 1qh, pp2k ` 1q ` 2qhs . (4.3.3)
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Using Theorem 3 part 4, we have

yppp2k ` 1q ` 1qhq “ ypσp2k ` 1qhq “ ypp2k ` 1qhq ` hy∆pp2k ` 1qhq

“

˜

k´1
ź

j“0

p1` hppp2j ` 1qhqqe
şp2j`1qh
2jh ppτq∆τ

¸

e
şp2k`1qh
2kh ppτq∆τ ` hpphqypp2k ` 1qhq

“

˜

k´1
ź

j“0

p1` hppp2j ` 1qhqqe
şp2j`1qh
2jh ppτq∆τ

¸

e
şp2k`1qh
2kh ppτq∆τ

` hpphq

˜

k´1
ź

j“0

p1` hppp2j ` 1qhqqe
şp2j`1qh
2jh ppτq∆τ

¸

e
şp2k`1qh
2kh ppτq∆τ

“ p1` hpphqq

˜

k´1
ź

j“0

p1` hppp2j ` 1qhqqe
şp2j`1qh
2jh ppτq∆τ

¸

e
şp2k`1qh
2kh ppτq∆τ

“

˜

k
ź

j“0

p1` hppp2j ` 1qhqqe
şp2j`1qh
2jh ppτq∆τ

¸

.

So that (4.3.3) becomes

yptq “

˜

k
ź

j“0

p1` hppp2j ` 1qhqqe
şp2j`1qh
2jh ppτq∆τ

¸

e
şt
p2k`1qh`1 ppτq4τ .

for t P rp2k ` 1qh` 1, p2k ` 1qh` 2s.

Hence, by induction

eppt, 0q “

˜

i´1
ź

j“0

p1` hppp2j ` 1qhqq e
şp2j`1qh
2jh ppτq4τ

¸

´

e
şt
2ih ppτq4τ

¯

, t P r2ih, p2i` 1qhs .

4.4 First Order Dynamic Equation on an Isolated Time Scale

Now consider a time scale T of isolated points. In this special case, there is a jump between

every point in T [3]. We state the following theorem.

Theorem 29. Assume y4 “ pptqy is regressive with initial condition ypt0q “ 1 on

T “ tt0, t1, t2, . . .u an isolated time scale.Then the solution eppt, 0q of the initial value prob-
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lem.

epptn, t0q “
n´1
ź

i“0

p1` µptiqpptiqq (4.4.1)

for n P N0

Proof. Let T “ tt0, t1, t2, ¨ ¨ ¨ u be an isolated time scale, and y4 “ pptqy is regressive with

initial condition ypt0q “ 1. By Theorem 17, yptq “ eppt, t0q, where yptq is the solution of

the initial value problem y∆ptq “ pptqyptq, ypt0q “ 1.

Now, since every point in T is right scattered, pµptq ą 0q @ t P T. So, using the Simple

Useful Formula Theorem 3 part 4

ypσptqq “ yptq ` µptqy∆ptq

“ yptq ` µptqpptqyptq

“ p1` µptqpptqqyptq.

Since eppt0, t0q “ 1 and σpt0q “ t1 so

eppt1, t0q “ eppσpt0q, t0q

“ ypσpt0qq

“ p1` µpt0qppt0qqeppt0, t0q

“ p1` µpt0qppt0qq.

Now, proceeding by induction, we assume that

epptk, t0q “
k´1
ź

i“0

p1` µptiqpptiqq, for k ą 1.
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So for k ` 1, we have

epptk`1, t0q “ eppσptkq, t0q

“ ypσptkq

“ p1` µptkqpptkqqepptk, t0q

“ p1` µptkqpptkq
k´1
ź

i“0

p1` µptiqpptiqq

“

k
ź

i“0

p1` µptiqpptiqq.

Hence, by induction epptn, t0q “
śn´1
i“0 p1` µptiqpptiqq, for all tn P T.
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Chapter 5

Numerical Solution of a First Order Dynamic Equation with

Jumps

We also solved the IVP y∆ptq “ 1
3yptq with y∆p0q “ 1

3 numerically. We started by writing

the Taylor’s series expansion using discrete notation,

yn`1 “ yn ` kF ryn, tns `
k2

2
F 1ryn, tns `

k3

6
F 2ryn, tns ` . . .

Then truncating the Taylor’s series from the F 1ryn, tns term the Euler’s method is obtained.

yn`1 “ yn ` kF ryn, tns.

The right hand side of our dynamic equation y∆ptq “ 1
3yptq in discrete notation is written

as F ry, ts “ 1
3y ,with initial condition y0 “ 1 so that F ryn, tns “ 1

3y
n. Therefore, the Euler’s

method is the iteration

y0 “ 1

yn`1 “ yn ` k

ˆ

1

3
yn
˙

we used the step size of k “ 0.01 on the grid [0,10].
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5.1 Numerical Solutions of a First Order Dynamic Equation on Time

Scales with Non-Uniform Jumps

In Chapter 4, we gave an analytical description of the solution of the IVP (2.5.2) on a time

scale with non-uniform and uniform jumps. So in this section, we solved numerically the

IVP y∆ptq “ 1
3yptq with y∆p0q “ 1

3 and considered our grid T “ r0, 10s as a time scale.

To see what the solution will look like if there were arbitrary jumps in our time scale, we

considered T0 “ r0, 10s. We obtained a subset T1 of T0 by removing the open ’middle third’,

the interval
`

10
3 ,

20
3

˘

from T0. T2 is obtained by removing the two open middle thirds of

T1, the two open intervals
`

10
9 ,

20
9

˘

and
`

70
9 ,

80
9

˘

. T3 is obtained by removing the four open

middle thirds of T2, the four open intervals
`

10
27 ,

20
27

˘

,
`

70
27 ,

80
27

˘

,
`

190
27 ,

200
27

˘

and
`

250
27 ,

260
27

˘

.

Then we used the Euler’s method to obtain the solution plot 1 on T0, T1, T2 and T3. In T1,

the grid starts from 0 to 10
3 and then continues from 20

3 up to 10. So we used the Euler’s

iteration from 0 to 10
3 and from 20

3 to 10. We chose k (the step size) such that the point 10
3

is included in the grid
“

0, 10
3

‰

and 20
3 is included in the grid

“

20
3 , 10

‰

. Suppose we wanted

500 discrete points in both grids, then k “ pfinal point in gridq{500, so for
“

0, 10
3

‰

k “
10
3

500
“ 0.0067,

we used the same step size in the grid
“

20
3 , 10

‰

since it is identical to
“

0, 10
3

‰

. So Using the

discrete notation, the initial condition y0 “ 1 gives us the solution at 0. Using Theorem24

we obtain y
20
3 as

y
20
3 “

ˆ

1`
1

3
¨

10

3

˙

¨ e
10
9

“

ˆ

19

9

˙

¨ e
10
9

1Euler’s method was implemented on the Python language and the code is included in the Appendix.
There is a description of the solution value at each left scattered points in our time scale.
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Therefore, the Euler’s method iteration from 20
3 in our grid becomes

y0 ” y
20
3 “

ˆ

19

9

˙

¨ e
10
9

yn`1 “ yn ` k

ˆ

1

3
yn
˙

.

Similarly in T2, the grid starts from 0 to 10
9 , continues from 20

9 to 10
3 and continues from 20

3

to 70
9 and then from 80

9 to 10. So the Euler’s iteration is used from 0 to 10
9 ,20

9 to 10
3 , 20

3 to

70
9 and from 80

9 to 10. We chose k (the step size) such that the point 10
9 is included in the

grid
“

0, 10
9

‰

, 20
9 and 10

3 are included in the grid
“

20
9 ,

10
3

‰

, 20
3 and 70

9 are included in the grid
“

20
3 ,

70
9

‰

and 80
9 is included in the grid

“

80
9 , 10

‰

. Suppose we wanted 500 discrete points in

the three grids, then k “ pfinal point in gridq{500, so for
“

0, 10
9

‰

k “
10
9

500
“ 0.0022.

We used the same step size in the grid
“

20
9 ,

10
3

‰

,
“

20
3 ,

70
9

‰

and
“

80
9 , 10

‰

since they are identical

to
“

0, 10
9

‰

. Theorem24 also gives us y
20
9 as

y
20
9 “

ˆ

1`
1

3
¨

10

9

˙

¨ e
10
27

“

ˆ

37

27

˙

¨ e
10
27 .

Therefore, the Euler’s method iteration from 20
9 to 30

9 becomes

y0 ” y
20
9 “

ˆ

37

27

˙

¨ e
10
27

yn`1 “ yn ` k

ˆ

1

3
yn
˙

,
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where we used step size k “ 0.0022.

Also by Theorem24 we obtain y
20
3 as

y
20
3 “

ˆ

1`
1

3
¨

10

9

˙

¨

ˆ

1`
1

3
¨

10

3

˙

¨ e
20
27

“

ˆ

37

27

˙

¨

ˆ

19

9

˙

¨ e
20
27 .

Therefore, the Euler’s method iteration from 20
3 to 70

9 becomes

y0 ” y
20
3 “

ˆ

37

27

˙

¨

ˆ

19

9

˙

¨ e
20
27

yn`1 “ yn ` k

ˆ

1

3
yn
˙

,

where we used step size k “ 0.0022.

And by Theorem24 , y
80
9 is

y
80
9 “

ˆ

1`
1

3
¨

10

9

˙

¨

ˆ

1`
1

3
¨

10

3

˙

¨

ˆ

1`
1

3
¨

10

9

˙

¨ e
20
27

“

ˆ

37

27

˙2

¨

ˆ

19

9

˙

¨ e
30
27 .

Therefore, the Euler’s method iteration from 80
9 to 10 becomes

y0 ” y
80
9 “

ˆ

37

27

˙2

¨

ˆ

19

9

˙

¨ e
30
27

yn`1 “ yn ` k

ˆ

1

3
yn
˙

,

where we used step size k “ 0.0022.

Following the process described above, we implemented the Euler’s method on T3 as well.

The figures that follow are the solution plot of the IVP y∆ptq “ 1
3yptq, y∆p0q “ 1

3 on

T0,T1,T2,T3.
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Figure 5.1: Solution plot of y∆ptq “ 1
3yptq, y∆p0q “ 1

3 on (a) T0. (b) T1. (c)T2. (d) T3
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Figure 5.2: Solution of y∆ptq “ 1
3yptq, y∆p0q “ 1

3 on T0, T1, T2 and T3
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5.2 Numerical Solution of a First Order Dynamic Equation on a Time

Scale with Uniform Jumps

We will solve the IVP y∆ptq “ 1
3yptq with y∆p0q “ 1

3 on a time scale with uniform jumps

numerically. Like we did in the previous section, we will consider our grid T1 “ r0, 10s as a

time scale. To see what the solution will look like if there were uniform jumps in our time

scale, we considered T10 “ r0, 10s. We obtained a subset T11 of T10 by slicing T10 into three

intervals, the intervals
“

0, 10
3

‰

,
`

10
3 ,

20
3

˘

and
“

20
3 , 10

‰

. where our jump is the interval
`

10
3 ,

20
3

˘

.

T12 is obtained by slicing T10 into five intervals, the intervals r0, 2s, p2, 4q, r4, 6s, p6, 8q and

r8, 10s, where our jumps are the intervals p2, 4q and p6, 8q. Similarly T13 is obtained by slicing

T10 into seven intervals, the intervals
“

0, 10
7

‰

,
`

10
7 ,

20
7

˘

,
“

20
7 ,

30
7

‰

,
`

30
7 ,

40
7

˘

,
“

40
7 ,

50
7

‰

,
`

50
7 ,

60
7

˘

,
“

60
7 , 10

‰

, where our jumps are the intervals
`

10
7 ,

20
7

˘

,
`

30
7 ,

40
7

˘

and
`

50
7 ,

60
7

˘

. Then we used

the Euler’s method to obtain the solution plot on T10, T11, T12 and T13. In T11, the grid starts

from 0 to 10
3 and then continues from 20

3 up to 10. So we used the Euler’s iteration from

0 to 10
3 and from 20

3 to 10. We chose k (the step size) such that the point 10
3 is included

in the grid
“

0, 10
3

‰

and 20
3 is included in the grid

“

20
3 , 10

‰

. Suppose we wanted 500 discrete

points in both grids. Then k “ pfinal point in gridq{500, so for
“

0, 10
3

‰

k “
10
3

500
“ 0.0067.

We used the same step size in the grid
“

20
3 , 10

‰

since it is identical to
“

0, 10
3

‰

. Using the

discrete notation, the initial condition y0 “ 1 gives us the solution at 0. Using Theorem24

we obtain y
20
3 as

y
20
3 “

ˆ

1`
1

3
¨

10

3

˙

¨ e
10
9

“

ˆ

19

9

˙

¨ e
10
9 .
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Therefore, the Euler’s method iteration from 20
3 in our grid becomes

y0 ” y
20
3 “

ˆ

19

9

˙

¨ e
10
9

yn`1 “ yn ` k

ˆ

1

3
yn
˙

.

Similarly in T12, the grid starts from 0 to 2, continues from 4 to 6 and from 8 to 10. So the

Euler’s iteration is used from 0 to 2, 4 to 6 and from 8 to 10. We chose k (the step size)

such that the point 2 is included in the grid r0, 2s, 4 and 6 are included in the grid r4, 6s

and 8 is included in the grid r8, 10s. Suppose we wanted 500 discrete points in the three

grids. Then k “ pfinal point in gridq{500, so for r0, 2s

k “
2

500
“ 0.004.

We used the same step size in the grid r4, 6s and r8, 10s since they are identical to r0, 2s.

Theorem24 also gives us y4 as

y4 “

ˆ

1`
1

3
¨ 2

˙

¨ e
2
3

“

ˆ

5

3

˙

¨ e
2
3

Therefore, the Euler’s method iteration from 4 to 6 becomes

y0 ” y4 “

ˆ

5

3

˙

¨ e
2
3

yn`1 “ yn ` k

ˆ

1

3
yn
˙

,
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where we used step size k “ 0.004.

Also by Theorem24 we obtain y8 as

y8 “

ˆ

1`
1

3
¨ 2

˙

¨

ˆ

1`
1

3
¨ 2

˙

¨ e
4
3

“

ˆ

5

3

˙2

¨ e
4
3 .

Therefore, the Euler’s method iteration from 8 to 10 becomes

y0 ” y8 “

ˆ

5

3

˙2

¨ e
4
3

yn`1 “ yn ` k

ˆ

1

3
yn
˙

,

where we used step size k “ 0.004.

Following the process described above, we implemented the Euler’s method on T13 as well.

The figures that follow are the solution plots of the IVP y∆ptq “ 1
3yptq, y∆p0q “ 1

3 on

T10,T11,T12,T13.
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Figure 5.3: Solution plot of y∆ptq “ 1
3yptq, y∆p0q “ 1

3 on (a)T10. (b) T11. (c) T12. (d) T13
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Figure 5.4: Solution of y∆ptq “ 1
3yptq, y∆p0q “ 1

3 on T10, T11, T12 and T13
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Appendix B

Python code

# Solving DE on a time scale with no jump T = [0, 10]

# y’ = (1/3)*y(t)

# y(t) = exp((1/3)*t)

from pylab import *

N1 = 500 # k=0.01

def F(u,t):

return (1.0/3)*u

def exactSolution(t):

return exp((1.0*t)/3)

finalT = 10.0

y1 = zeros((N1,1))

tp1 = zeros((N1,1))

y1[0] = 1.0

tp1[0] = 0

dt1 = finalT/N1

for i in range(0,N1-1):

y1[i+1] = y1[i] + dt1*F(y1[i],tp1[i])

tp1[i+1] = tp1[i] + dt1

ex1 = exactSolution(tp1)

er1 = abs(ex1[-1] - y1[-1])

DT1 = dt1
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print(’Max error’)

print er1

plot(tp1,y1,’b’,tp1,ex1,’r--’)

xlabel(’t’)

ylabel(’$y(t)$’)

legend((’numerical solution’,’exact solution’),loc=’best’)

axis([0,10,0,30])

show()

# Solving DE with 1-jump on a time scale T = [0,10]

# y’ = (1/3)*y(t)

# y(t) = exp((1/3)*t)

from pylab import *

y0 = 1.0

N1 = 500 # k=0.01

def F(u,t):

return (1.0/3)*u

def exactSolution1(t):

return exp((1.0*t)/3)

def exactSolution2(t):

return (19.0/9)*exp(10.0/9)*exp((t-(20.0/3))/3)

finalT1 = 10.0/3

y1 = zeros((N1,1))

y2 = zeros((N1,1))

tp1 = zeros((N1,1))

tp2 = zeros((N1,1))

y1[0] = 1.0

y2[0] = (19.0/9)*exp(10.0/9)

tp1[0] = 0

tp2[0] = 20.0/3

dt1 = finalT1/N1

for i in range(0,N1-1):
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y1[i+1] = y1[i] + dt1*F(y1[i],tp1[i])

y2[i+1] = y2[i] + dt1*F(y2[i],tp2[i])

tp1[i+1] = tp1[i] + dt1

tp2[i+1] = tp2[i] + dt1

ex1 = exactSolution1(tp1)

ex2 = exactSolution2(tp2)

er1 = abs(ex1[-1] - y1[-1])

er2 = abs(ex2[-1] - y2[-1])

DT1 = dt1

print(’Max error in First interval’)

print er1

print(’Max error in Second interval’)

print er2

plot(tp1,y1,’b’,tp1,ex1,’r--’,tp2,y2,’b’,tp2,ex2,’r--’)

xlabel(’t’)

ylabel(’$y(t)$’)

legend((’numerical solution’,’exact solution’),loc=’best’)

axis([0,10,0,30])

show()

# Solving the DE with 2 uniform jumps on a time scale T=[0,10]

# y’ = (1/3)*y(t)

# y(t) = exp((1/3)*t)

from pylab import *

N1 = 500 # k=0.01

def F(u,t):

return (1.0/3)*u

def exactSolution1(t):

return exp((1.0*t)/3)

def exactSolution2(t):

return (5.0/3)*exp(2.0/3)*exp((t-4.0)/3)

def exactSolution3(t):

return ((5.0/3)**2)*exp(4.0/3)*exp((t-(8.0))/3)

finalT1 = 2.0
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y1 = zeros((N1,1))

y2 = zeros((N1,1))

y3 = zeros((N1,1))

tp1 = zeros((N1,1))

tp2 = zeros((N1,1))

tp3 = zeros((N1,1))

y1[0] = 1.0

y2[0] = (5.0/3)*exp(2.0/3)

y3[0] = ((5.0/3)**2)*exp(4.0/3)

tp1[0] = 0

tp2[0] = 4.0

tp3[0] = 8.0

dt1 = finalT1/N1

for i in range(0,N1-1):

y1[i+1] = y1[i] + dt1*F(y1[i],tp1[i])

y2[i+1] = y2[i] + dt1*F(y2[i],tp2[i])

y3[i+1] = y3[i] + dt1*F(y3[i],tp3[i])

tp1[i+1] = tp1[i] + dt1

tp2[i+1] = tp2[i] + dt1

tp3[i+1] = tp3[i] + dt1

ex1 = exactSolution1(tp1)

ex2 = exactSolution2(tp2)

ex3 = exactSolution3(tp3)

er1 = abs(ex1[-1] - y1[-1])

er2 = abs(ex2[-1] - y2[-1])

er3 = abs(ex3[-1] - y3[-1])

DT1 = dt1

print(’Max error in First interval’)

print er1

print(’Max error in Second interval’)

print er2

print(’Max error in Third interval’)

print er3

plot(tp1,y1,’b’,tp1,ex1,’r--’,tp2,y2,’b’,tp2,ex2,’r--’,tp3,y3,’b’,tp3,ex3,’r--’)

xlabel(’t’)

ylabel(’$y(t)$’)
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legend((’numerical solution’,’exact solution’),loc=’best’)

axis([0,10,0,30])

show()

# Solving the DE with 3 uniform jumps on T = [0,10]

# y’ = (1/3)*y(t)

# y(t) = exp((1/3)*t)

from pylab import *

N1 = 500 # k=0.01

def F(u,t):

return (1.0/3)*u

def exactSolution1(t):

return exp((1.0*t)/3)

def exactSolution2(t):

return (31.0/21)*exp(10.0/21)*exp((t-(20.0/7))/3)

def exactSolution3(t):

return ((31.0/21)**2)*exp(20.0/21)*exp((t-(40.0/7))/3)

def exactSolution4(t):

return ((31.0/21)**3)*exp(30.0/21)*exp((t-(60.0/7))/3)

finalT1 = 10.0/7

y1 = zeros((N1,1))

y2 = zeros((N1,1))

y3 = zeros((N1,1))

y4 = zeros((N1,1))

tp1 = zeros((N1,1))

tp2 = zeros((N1,1))

tp3 = zeros((N1,1))

tp4 = zeros((N1,1))

y1[0] = 1.0

y2[0] = (31.0/21)*exp(10.0/21)

y3[0] = ((31.0/21)**2)*exp(20.0/21)

y4[0] = ((31.0/21)**3)*exp(30.0/21)

tp1[0] = 0

tp2[0] = 20.0/7
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tp3[0] = 40.0/7

tp4[0] = 60.0/7

dt1 = finalT1/N1

for i in range(0,N1-1):

y1[i+1] = y1[i] + dt1*F(y1[i],tp1[i])

y2[i+1] = y2[i] + dt1*F(y2[i],tp2[i])

y3[i+1] = y3[i] + dt1*F(y3[i],tp3[i])

y4[i+1] = y4[i] + dt1*F(y4[i],tp4[i])

tp1[i+1] = tp1[i] + dt1

tp2[i+1] = tp2[i] + dt1

tp3[i+1] = tp3[i] + dt1

tp4[i+1] = tp4[i] + dt1

ex1 = exactSolution1(tp1)

ex2 = exactSolution2(tp2)

ex3 = exactSolution3(tp3)

ex4 = exactSolution4(tp4)

er1 = abs(ex1[-1] - y1[-1])

er2 = abs(ex2[-1] - y2[-1])

er3 = abs(ex3[-1] - y3[-1])

er4 = abs(ex4[-1] - y4[-1])

DT1 = dt1

print(’Max error in First interval’)

print er1

print(’Max error in Second interval’)

print er2

print(’Max error in Third interval’)

print er3

print(’Max error in Fourth interval’)

print er4

plot(tp1,y1,’b’,tp1,ex1,’r--’,tp2,y2,’b’,tp2,ex2,’r--’,tp3,y3,’b’,tp3,ex3,’r--’,\-

tp4,y4,’b’,tp4,ex4,’r--’)

xlabel(’t’)

ylabel(’$y(t)$’)

legend((’numerical solution’,’exact solution’),loc=’best’)

axis([0,10,0,30])

show()
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