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Abstract: Epidemiological models with constant parameters may not capture satisfactory infection
patterns in the presence of pharmaceutical and non-pharmaceutical mitigation measures during a
pandemic, since infectiousness is a function of time. In this paper, an Epidemiology-Informed Neural
Network algorithm is introduced to learn the time-varying transmission rate for the COVID-19
pandemic in the presence of various mitigation scenarios. There are asymptomatic infectives, mostly
unreported, and the proposed algorithm learns the proportion of the total infective individuals
that are asymptomatic infectives. Using cumulative and daily reported cases of the symptomatic
infectives, we simulate the impact of non-pharmaceutical mitigation measures such as early detection
of infectives, contact tracing, and social distancing on the basic reproduction number. We demonstrate
the effectiveness of vaccination on the transmission of COVID-19. The accuracy of the proposed
algorithm is demonstrated using error metrics in the data-driven simulation for COVID-19 data of
Italy, South Korea, the United Kingdom, and the United States.

Keywords: deep-learning; asymptotic population; COVID-19; mitigation measures; time-varying
transmission rate; reproduction number

1. Introduction

In December 2019, a new respiratory illness began to spread throughout Wuhan,
China. The virus responsible for this illness is the SARS-CoV-2 and the disease is called
COVID-19 [1]. It quickly spread through Wuhan, a city of 11 million people in Hubei
province. It infected tens of thousands of people over the ensuing weeks. China imposed
major restrictions on travel and work, and by the end of February, cases of COVID-19 had
slowed inside the country while spiking all over the world. COVID-19 data from different
countries reflects various mitigation measures [2,3], such as lockdown, social distancing,
early detection of infectives, contact tracing, and vaccination [4–6]. Many data-driven
approaches in infectious disease modeling are linear models. When using linear regres-
sion, statistical methods such as Auto Regressive Moving Average (ARIMA) and Moving
Average (MA) rely on assumptions which make it impossible to forecast transmission
rate at any given time during a pandemic [7]. Time-varying transmission rates have been
suggested to efficiently model the spread of COVID-19. For example, fast methods for
estimating time-varying transmission rate were introduced in [8]; however, they reported
that their method suffers from extreme sensitivity to noise. In [9], a first-principle machine
learning approach was presented to predict time-dependent parameters, but these param-
eters require good initial guesses. In March and April 2020, many countries instituted
widespread lockdown [10]. A model-fitting approach for lockdown and lockdown relax-
ation is presented in [11], which requires good estimation of the model parameters as well
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as quantification of the impact of relaxation. In [12], the time-varying reproduction number
Rt is estimated for counties in Georgia, USA, with a 95% confidence credible interval.

The first epidemiology model, the SIR model, was presented by Kermack and McK-
endrick in 1927 [13]. The SIR model has inspired several epidemiological studies of diseases
like, Malaria and Dengue fever [14] and recently COVID-19. A widely used threshold
parameter for the spread or extinction of an infectious disease in an epidemiology model
is the basic reproduction number [15]. It is defined as the average number of persons an
infected person can infect. When the basic reproduction number is less than one, the infec-
tious disease vanishes. In the SIR model [13], the basic reproduction number is computed
as the ratio of the transmission rate to the recovery rate. In this paper, we adopt a variant of
the asymptomatic-SIR model presented in [16]. When the transmission and recovery rates
are constants, the basic reproduction number is given by the ratio of the transmission rate
to a weighted sum of the symptomatic and asymptomatic recovery rates. However, When
the transmission rate is time-varying, we use a modified reproduction, which we call the
time-varying reproductionRt. This time-varying reproduction number,Rt, demonstrates
the spread pattern of COVID-19 throughout the duration of the pandemic.

There is an asymptomatic period for every infective individual in the range of 7 to
14 days [17]. There are also asymptomatic infectives that never show symptoms but are
infectious [16]. Early studies of the spread of COVID-19 shows that some of the infectives
are asymptomatic infectives [18,19] and they are mostly unreported in the publicly available
data [16]. In [20], it was reported that the asymptomatic infectives can spread the virus
efficiently, and they are the silent spreaders of COVID-19, which has caused difficulties in
the control of the pandemic. Early in the pandemic, the Centers for Disease Control and
Prevention (CDC) estimates the proportion of the asymptomatic infectives to be 40% of the
total infectives in the USA [19]. A high population proportion of asymptomatic infectives
was estimated in [18] for China and Singapore. In [20], the proportion of Asymptomatic
infectious patients in Wanzhou district before 10 April 2020 was 20%. [16] reported 10%
of the total infectives were asymptomatic in northern Italy. In a study conducted in
England from June through September 2020 and in Spain from 27 April to 11 May 2020, the
proportions of asymptomatic infectives in England and Spain were reported to be 32.4%
and 33.0% respectively [21].

Deep learning [22] and Neural networks have found applications in function ap-
proximation tasks, since neural networks are known to be universal approximators of
continuous functions [23,24]. Feedforward neural networks (FNN) have been used to
learn approximate solutions of differential equations. In [25], FNN was combined with the
traditional Cox model for survival analysis to predict the clinical outcome of COVID-19
patients. In [26], FNN was used to develop differential equation solvers and parameter
estimators by constraining the residual. This FNN is called the Physics Informed Neural
Network (PINN). PINN has been used to simulate pandemic spread, see [27], where the
model parameters were taken to be constants [26,28], PINN was used to solve nonlinear
partial differential equations from data. PINN has been used to solve system of ordinary
differential equations [29] and system of fractional differential equations [30]. In [31], an al-
gorithm that combines PINN together with LSTM is presented to solve an epidemiological
model and identify weekly and daily time-varying parameters.

To overcome the limitations of statistical approaches, we present an Epidemiology-
Informed Neural Network (EINN) inspired by applying a PINN to epidemiology models.
Given that it may not be possible to know the most accurate form of a time-varying
transmission rate, EINN algorithms is a viable option to learn time-varying transmission
rate and to detect the impact of mitigation measures from data. The EINN loss function
is extended to include some known epidemiology facts about infectious diseases. To
detect hidden details in the training data, a cubic spline interpolation is used to generate
sufficient training data. The proposed EINN algorithm can capture the dynamics of the
spread of the disease and the influence of various mitigation measure. Since asymptomatic
infectives population is unreported in the publicly available data [32]. EINN algorithm
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learns asymptomatic infectives population by training on symptomatic infectives data that
are available in the reported public data.

The paper is organized as follows. In Section 2, we introduce and discuss the
asymptomatic-SIR model, the neural network structure of EINN and the EINN algo-
rithm for time-varying transmission rate. In Section 3, data-driven simulation results for
constant transmission rates, data-driven simulation results for pharmaceutical and non-
pharmaceutical mitigation measures, and data-driven simulation results for time-varying
transmission rates are presented. In Section 4, we discuss the mitigation measures, vac-
cination efficacy, the time-varying transmission results and error metrics for data-driven
simulation. Finally, a summary of the results in this paper is presented in Section 5.

2. Materials and Methods
2.1. Asymptomatic-SIR Model

The asymptomatic-SIR model introduced in [16] assumes that some of the infectives
are asymptomatic infectives. This group is infectious despite not showing symptoms of
COVID-19, probably are not tested, and are usually unreported in the various publicly
available data.

The asymptomatic-SIR model considers the following population compartments: the
Susceptible (S), the symptomatic Infectives (I) which correspond to the reported infectives
in the publicly available data, and the asymptomatic Infectives (J) which correspond to
the unreported infectives. The total infectives are I + J. The rest of the compartments are
the symptomatic Recovered (R) and the asymptomatic Recovered (U). The symptomatic
Infectives (I) recover at the rate γ, and the asymptomatic Infectives (J) recover at the
rate µ. I recover through isolation in the hospital or at home. On the other hand, the J
recover spontaneously. The vaccinated population, (V = κS), is a loss from the susceptible
compartment: they are added to the recovered compartments. β(t) is the time-varying
transmission rate, it usually depends on the infection vector. In the COVID-19 pandemic,
β(t) depends also on contacts between individuals. κ is the average percentage of individ-
uals that are vaccinated daily. ξ represents the probability that an infective individual is
reported, while (1− ξ) is the probability that an infective is an asymptomatic infective. The
portion of the total infectives that are symptomatic and reported corresponds to ξ(I + J).
On the other hand, (1− ξ)(I + J) represents the asymptomatic infectives. N represents
the total population (2). It is assumed that N does not change throughout the pandemic
and that infective individuals are immediately infectious. The dynamics of the interactions
between the compartments in Figure 1 can be represented by the following system of
ordinary differential equations with time-varying transmission rate β(t).

dS(t)
dt

= − 1
N

β(t)
(

I(t) + J(t)
)

S(t)− κS(t)

dI(t)
dt

=
1
N

β(t)ξ
(

I(t) + J(t)
)

S(t)− γI(t)

dJ(t)
dt

=
1
N

β(t)
(

1− ξ
)(

I(t) + J(t)
)

S(t)− µJ(t)

dR(t)
dt

= γI(t) + κξS(t)

dU(t)
dt

= µJ(t) + κ(1− ξ)S(t).

(1)

The continuity equation is given by

N(t) = S(t) + I(t) + J(t) + R(t) + U(t), t ≥ t0. (2)

The initial conditions are denoted by S(t0) = S0, I(t0) = I0, J(t0) = J0, R(t0) = R0,
and U(t0) = U0, where t ≥ t0 represent time in days and t0 is the start date of the pandemic
in the model. The model parameters are summarized in Table 1.
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Figure 1. Compartments in Asymptomatic-SIR model with vaccination.

Table 1. Summary table of parameters in (1)

Parameter Notation Range Remark Reference

Baseline transmission rate β0 [0,1) fitted using early data [9,17]
Probability that an Infected
person is reported ξ [0, 1) constant [16]

Proportions of individuals
that are vaccinated daily κ [0, 1) constant [4,17]

recovery rate of
symptomatic infectives γ [0,1) constant [16]

recovery rate of
asymptomatic infectives µ [0,1) constant [16]

2.2. Time-Varying Transmission Rate

Time-varying transmission rate β(t) in (1) incorporates the impact of public health
actions and the public response to the actions [3,33]. The formulation of β(t) in [33] includes
temperature. This parameter is not considered in the formulation presented in [3], since
there is no evidence that temperature plays a role in the transmission of COVID-19. Early
in the transmission of COVID-19, the major public health action was lockdown, which
was followed by other measures such as social distancing, contact tracing, masking, early
detection of infectives and so on. We chose a formulation of β(t) that strongly reflects
the pre and post-lockdown periods. In [11] a sigmoid function is used to model a time-
dependent decrease in the transmission of COVID-19. In [16], a piecewise constant function
is used to model β(t). Our formulation of β(t) follows the approach presented in [17]. The
following exponentially decreasing function is used to represent the transmission rate β(t)
in (1) to model the impact of lockdown.

β(t) =

{
β0, 0 ≤ t ≤ K,
β0 exp (−η(t− K)), K < t

(3)

where K signifies the onset of government intervention including isolation, quarantine and
lockdown. η is the rate at which human contact decreases. We denote K to be the number
of days between the date of the first reported case of COVID-19 and the date lockdown
was instituted.

When the transmission rate in (1) is assumed to be constant, (β(t) = β), the basic
reproduction number (R0) for the asymptomatic-SIR model Equation (1) is given by

R0 =
β

ξγ + (1− ξ)µ
ξ ∈ (0, 1). (4)
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If ξ = 0,R0 = β/µ, when all the infective population are asymptomatic.
If ξ = 1,R0 = β/γ, when all the infective population are symptomatic.
We use the time-varying reproduction rateRt as presented in [16] for the asymptomatic-

SIR model (1) given by,

Rt =
γβ(t)[

γ
(

I(t)
I(t)+J(t)

)
+ µ

(
1− I(t)

I(t)+J(t)

)]2 . (5)

2.3. Neural Network Structure
2.3.1. Feedforward Neural Network (FNN)

An FNN can be represented as a function of L layers, t input vector and an output N

N (t; θ) = σ(WLσ(. . . σ(W2σ(W1t + b1) + b2) . . .) + bL), (6)

where θ: = (W1, . . . , WL, b1,. . . , bL). Wk, k = 1, . . . , L, is the set of the neural network weight
matrices while bk, k = 1, . . . , L, is the set of the bias vectors. σ is the activation function.
Given a collection of sample pairs (tj, uj), j = 1, . . . M, where u is some target function. The
goal is to find θ∗ by solving the optimization problem

θ∗ = arg min
θ

1
M

M

∑
j=1
||N (tj; θ)− uj||22. (7)

The function 1
M ∑M

j=1 ||N (tj; θ)− uj||22 on the right-hand side of (7) is called the mean
squared error (MSE) loss function. A major task in training a network is to determine
the suitable number of layers and the number of neurons per layer needed, the choice of
activation function, and an appropriate optimizer for the loss function [34].

2.3.2. Epidemiology-Informed Neural Network (EINN)

EINN is a type of Feedforward Neural Network that includes the known epidemiology
dynamics in its loss function. In this paper, EINN is adapted for the asymptomatic-SIR
model (1), where the Mean Square Error (MSE) of this neural network’s loss function
includes the known epidemiology dynamics such as a lockdown, while other mitigation
measures such as social distancing, and contact tracing are detected by the time-varying
transmission rate. The output of EINN are the learned solutions to the asymptomatic-SIR
model (1) denoted by S(tj; θ; λ), I(tj; θ; λ), J(tj; θ; λ), R(tj; θ; λ), U(tj; θ; λ), j = 1, . . . , M.
Where θ represent the neural network weights and biases and λ represent the epidemiology
parameters. M is the number of training set. The network representing the time-varying
transmission rate is denoted by β(tj; φ; η), j = 1, . . . , M, The parameter φ represents the
weights and biases of this network and η is the exponential decay parameter. The training
data are generated using cubic spline and denoted by Ĩ(tj), R̃(tj), j = 1, . . . , M and Ṽ(tj),
j = 1, . . . , Mκ from the given dataset. Here Mκ is the number of vaccination days. We
observe that training data are not available for all the compartments in the asymptomatic-
SIR model; however, EINN is able to capture the epidemiology interactions between
the compartments because the epidemiology model residual is included in the MSE loss
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function. The MSE loss function for EINN with the time-varying transmission rate is
given by

MSE =
1
M

M

∑
j=1
||I(tj; θ; λ)− Ĩ(tj)||22 +

1
M

M

∑
j=1
||R(tj; θ; λ)− R̃(tj)||22

+
1

Mβ

Mβ

∑
j=1
||β(tj; φ; η)− β̃(tj)||22

+
1

Mκ

Mκ

∑
j=1
||κS(tj; θ; λ)− Ṽ(tj)||22

+ ||J(0; θ; λ)− J̃(0)||22 + ||U(0; θ; λ)− Ũ(0)||22

+
1
M

6

∑
i=1

M

∑
j=1
||Li(tj; θ; φ; λ; η)||22,

(8)

where the residual Li, i = 1, . . . 6 is as follows

L1(tj; θ; φ; λ; η) =
dS(tj; θ; λ)

dtj
+

1
N

β(tj; φ; η)
(

I(tj; θ; λ) + J(tj; θ; λ)
)

S(tj; θ; λ)

+ κS(tj; θ; λ)

L2(tj; θ; φ; λ; η) =
dI(tj; θ; λ)

dtj
− 1

N
β(tj; φ; η)ξ

(
I(tj; θ; λ) + J(tj; θ; λ)

)
S(tj; θ; λ)

+ γI(tj; θ; λ)

L3(tj; θ; φ; λ; η) =
dJ(tj; θ; λ)

dtj
− 1

N
β(tj; φ; η)

(
1− ξ

)(
I(tj; θ; λ) + J(tj; θ; λ)

)
S(tj; θ; λ)

+ µJ(tj; θ; λ)

L4(tj; θ; φ; λ; η) =
dR(tj; θ; λ)

dtj
− γI(tj; θ; λ)− κξS(tj; θ; λ)

L5(tj; θ; φ; λ; η) =
dU(tj; θ; λ)

dtj
− µJ(tj; θ; λ)− κ(1− ξ)S(tj; θ; λ)

L6(tj; θ; φ; λ; η) = N − (S(tj; θ; λ) + I(tj; θ; λ) + J(tj; θ; λ) + R(tj; θ; λ) + U(tj; θ; λ)).

(9)

In Figure 2, EINN includes the time-varying infection as an output of the neural
network. ICs represents the loss in the neural network output for the asymptomatic
infectives J(0; θ) and the asymptomatic recovered U(0; θ) at t = 0. KPs represent the
known dynamics in the transmission rates pattern. M is the number of training points.
M does not necessarily correspond to the number of available data. M is generated by
fitting the data with cubic splines. For instance, Ĩ(tj), j = 1, . . . , M is the training data for
the infectives after fitting with an interpolation function. Mβ is the number of training
points used to enforce the known dynamics of the transmission rates pattern. Since κ is
the average percentage of individuals that are vaccinated daily, Mκ is the number of days
κ is not zero. Ṽ(tj) = κS̃(tj), j = 1, . . . , Mκ , is the daily vaccination data. The input to
EINN is tj, j = 1, . . . , M. To achieve good accuracy in the neural network, we tune the
hyperparameters; such as the number of layers, number of training points, and the learning
rate. In all the simulations presented in this paper, we used 4 hidden layers, 64 neurons per
layer, and the training loss was minimized in 40,000 iterations. Cubic splines are used to
generate 3000 training points from the original dataset. The loss function is minimized by
a gradient-based optimizer such as the adam optimizer [35].
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Figure 2. Schematic diagram of the Epidemiology-Informed Neural Network with nonlinear time-
varying transmission rate. The term KPs represent the known dynamics in the transmission rates
pattern and ICs represent the initial condition for the asymptomatic population.

3. Results
3.1. Data-Driven Simulation Results for Constant Transmission Rates

Using data from Italy, South Korea, and the United States starting from the date of
the first reported cases in the respective countries to the day before vaccination data were
reported. The cumulative infective and recovered population data are observed to be
non-exponential whenever a mitigation measure such as a comprehensive lockdown is
detected in the data. We take the total population N to be 60.36× 106, 51.64× 106, and
328.2× 106 in Italy, South Korea and the USA, respectively. In Figures 3a–5a Mκ is zero
and so κ = 0 for all the period from the first reported cases to the day before vaccination
data are reported. In addition to learning the parameters, EINN learns ξ, the probability
that an infective is reported. High value of ξ indicates large number of reported infectives.

As shown in Figures 3a–5a early in the pandemic, the cumulative infective and
recovered data closely resemble an exponential function and cubic spline interpolation
is used to generate 3000 training points from the cumulative symptomatic infective and
recovered data. The learned plots look the same as the original data. In Figure 3, EINN
Algorithm A1 learns the constant model parameters as follows: β = 0.03, γ = 0.0121,
µ = 0.0128, ξ = 0.37,R0 = 2.3922. MSE cumulative symptomatic case (I) is 8.11× 10−4. In
Figure 4, EINN Algorithm A1 learns the constant model parameters β = 0.0104, γ = 0.0053,
µ = 0.0046, ξ = 0.22, and R0 = 2.1876. MSE in the cumulative symptomatic case (I)
is 1.3 × 10−5. In Figure 5, EINN Algorithm A1 learns the constant model parameters
β = 0.0202, γ = 0.0044, µ = 0.0089 and ξ = 0.46, R0 = 2.9575. The mean squared error
MSE in the cumulative symptomatic case (I) is 1.99× 10−4.
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Figure 3. Simulation of Italy COVID-19 data; (a) The learned symptomatic infectives and recovered
population by the EINN Algorithm A1; (b) EINN Algorithm A1 learns the cumulative population of
Italy that are asymptomatic infectives and asymptomatic recovered from 31 January to 11 December.
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Figure 4. Simulation of South Korea COVID-19 data; (a) The learned symptomatic infectives and
recovered population were obtained by the EINN Algorithm A1; (b) EINN Algorithm A1 learns the
cumulative population of South Korea that are asymptomatic infectives and asymptomatic recovered
from 22 January to 11 December.
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Figure 5. Simulation of USA COVID-19 data; (a) The learned symptomatic infectives and recovered
population were obtained by the EINN Algorithm A1; (b) EINN Algorithm A1 learns the cumulative
population of USA that are asymptomatic infectives and asymptomatic recovered from 22 January to
11 December.

3.2. Data-Driven Simulation Results for Non-Pharmaceutical Mitigation Measures

The model parameters in an epidemiology model are influenced by mitigation mea-
sures. For instance, social distancing corresponds to reducing the transmission rate by
reducing human contact. In this Section, we simulate different levels of various non-
pharmaceutical mitigation measure, and we demonstrate their impact on R0 and the
spread of COVID-19.

3.2.1. Early Detection of Infectives

Early detection of infectives population leads to higher reported infectives. This results
in an early isolation of individuals who have had contact with infective individuals. There
are no reported data for the asymptomatic infectives populations. Simulating with higher
ξ increases the symptomatic infectives population. This corresponds to higher reported
cases. Simulations are presented for Italy, South Korea, and the USA see Tables 2–4.

Table 2. The learned parameters using EINN Algorithm A1 with fixed values of ξ based on Italy data
from 31 January 2020 to 5 September 2020.

ξ β γ µ βξ β(1− ξ) R0

0.10 0.0111 0.0013 0.0343 0.0011 0.0099 0.3578
0.25 0.0111 0.0012 0.0363 0.0028 0.0083 0.4005
0.50 0.0130 0.0048 0.0181 0.0065 0.0065 1.1350
0.75 0.0122 0.0061 0.0218 0.0092 0.0031 1.2194
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Table 3. The learned parameters using EINN Algorithm A1 with fixed values of ξ based on South
Korea data from 22 January 2020 to 5 September 2020.

ξ β γ µ βξ β(1− ξ) R0

0.10 0.0171 0.0030 0.0140 0.0017 0.0154 1.3214
0.25 0.0206 0.0073 0.0206 0.0051 0.0154 1.1907
0.50 0.0146 0.0141 0.0062 0.0073 0.0073 1.4389
0.75 0.0148 0.0182 0.0053 0.0111 0.0037 0.9909

Table 4. The learned parameters using EINN Algorithm A1 with fixed values of ξ based on USA
data from 22 January 2020 to 5 September 2020.

ξ β γ µ βξ β(1− ξ) R0

0.10 0.0260 0.0012 0.0597 0.0026 0.0234 0.4847
0.25 0.0271 0.0013 0.0470 0.0068 0.0203 0.7619
0.50 0.0252 0.0042 0.0544 0.0126 0.0126 0.8602
0.75 0.0212 0.0057 0.0369 0.0159 0.0053 1.5751

Higher ξ values in Tables 2–4, increase the symptomatic infectives population and
reduce the asymptomatic population in general. This is reflected by the increase in the
βξ column and the corresponding decrease in the β(1 − ξ) column. This means that
more people will be in hospitalization/isolation. This translates to more recovery in the
symptomatic compartment. We see that the detection of early infectives alone is not enough
to mitigate an infectious disease such as COVID-19. It should be combined with other
measures such as contact tracing of infectives.

3.2.2. Social Distancing

It is widely understood that measures such as a lockdown, social distancing, and
widespread adoption of facial coverings result in the mitigation of COVID-19. Social
distancing is often the most sought-after measure at reducing the R0. The goal of social
distancing is to reduce the average number of human contacts. This is demonstrated
by reducing β, the transmission rate [16]. The impact of social distancing on the R0 is
presented in the following Tables 5 and 6.

Table 5. The learned parameters using EINN Algorithm A1 with fixed values of β based on Italy
data from 31 January 2020 to 5 September 2020.

β γ ξ µ βξ β(1− ξ) R0

0.020 0.0071 0.6667 0.2234 0.0133 0.0067 0.2525
0.015 0.0042 0.4957 0.0653 0.0074 0.0076 0.4284
0.010 0.0048 0.6375 0.0060 0.0064 0.0036 1.9102
0.005 0.0031 0.7195 0.0037 0.0036 0.0014 1.5298

Table 6. The learned parameters using EINN Algorithm A1 with fixed values of β based on South
Korea data from 22 January 2020 to 5 September 2020.

β γ ξ µ βξ β(1− ξ) R0

0.020 0.0156 0.3359 0.0076 0.0067 0.0133 1.9442
0.015 0.0077 0.2839 0.0078 0.0043 0.0107 1.9301
0.010 0.0057 0.2454 0.0041 0.0025 0.0075 2.2259
0.005 0.0017 0.1369 0.0021 0.0007 0.0043 2.4447

Reducing β in Tables 5 and 6 correspond to a reduced symptomatic infectives popula-
tion I. There is an increase in asymptomatic infectives population J. Social distancing is
effective when the asymptomatic infective population J diminishes. βξ and β(1− ξ) both
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decreases. Social distancing should be combined with contact tracing and early detection
of infectives population.

3.2.3. Contact Tracing of Infectives

Contact tracing is equivalent to increasing the symptomatic recovery and asymp-
tomatic recovery rates [16]. However, since we do not have reported data for the asymp-
tomatic population, in this paper, we pursue contact tracing as an increase in the symp-
tomatic recovery rate. This is equivalent to reducing the number of days an infective
individual stays infective. In Tables 7–9, the impact of contact tracing is demonstrated by
increasing the symptomatic recovery rate.

Table 7. The learned parameters using EINN Algorithm A1 with fixed values of γ based on Italy
data from 31 January 2020 to 5 September 2020.

γ β ξ µ βξ β(1− ξ) R0

0.0005 0.0095 0.3345 0.0093 0.0032 0.0063 1.4946
0.0010 0.0093 0.4727 0.0116 0.0044 0.0049 1.4114
0.0050 0.0118 0.5633 0.0133 0.0066 0.0052 1.3682
0.0100 0.0104 0.7669 0.0036 0.0080 0.0024 1.2224

Table 8. The learned parameters using EINN Algorithm A1 with fixed values of γ based on South
Korea data from 22 January 2020 to 5 September 2020.

γ β ξ µ βξ β(1− ξ) R0

0.0010 0.0124 0.1556 0.0071 0.0019 0.0105 2.0160
0.0050 0.0109 0.2582 0.0043 0.0028 0.0081 2.4326
0.0100 0.0147 0.2690 0.0086 0.0040 0.0107 1.6376
0.0150 0.0145 0.3679 0.0079 0.0053 0.0092 1.3794

Table 9. The learned parameters using EINN Algorithm A1 with fixed values of γ based on USA
data from 22 January 2020 to 5 September 2020.

γ β ξ µ βξ β(1− ξ) R0

0.0005 0.0198 0.6240 0.0566 0.0124 0.0074 0.9169
0.0010 0.0227 0.4152 0.0222 0.0094 0.0133 1.6943
0.0050 0.0228 0.5783 0.0261 0.0132 0.0096 1.6405
0.0100 0.0295 0.5253 0.0345 0.0155 0.0140 1.3638

The raising of γ in Tables 7–9, increases the symptomatic infectives population I which
is demonstrated in increased ξ and increased β. β(1− ξ) decreases while βξ increases. This
also results in a reducedR0. Contact tracing is an efficient mitigation measure in lowering
the spread of COVID-19.

3.3. Data-Driven Simulation Results for Vaccination Efficacy

The mitigation measures described in Section 3.2 are non-pharmaceutical measures. In
this Section, we discuss vaccination. In the fight against COVID-19, countries such as USA
and United Kingdom began to vaccinate in December 2020. A major goal of vaccination is
to reduce the susceptible population, i.e., people recover without becoming infected. This
constitutes a pharmaceutical mitigation measure. We considered the vaccination data for
the USA and United Kingdom, and simulate the effectiveness of vaccination on the daily
reported infectives. Algorithm A1 is implemented for the asymptomatic-SIR model (1). In
Figure 6 we present simulation of the effectiveness of vaccination in combination with an
increase in social distancing for USA and United Kingdom.
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Figure 6. Vaccination effectiveness for USA and United Kingdom. In (a) The model is extrapolated
for 3 cases. The red curve is the case of no vaccination, here κ = 0. For the blue curve, we used
the USA projection of 1,000,000 daily vaccination. In the case of the magenta curve, we learned κ

using the daily vaccination data. The first reported case was 22 January 2020, Vaccination data were
first reported 19 December 2020. In (b) The model is extrapolated for 2 cases. The red curve is the
case of no vaccination, here κ = 0. The magenta curve, we learned κ using the daily vaccination
data. The first reported case was 31 January 2020, Vaccination data were first reported 13 December
2020. (a) The effectiveness of vaccination is demonstrated by learning the pre-vaccination and
post-vaccination epidemiology parameters using smooth daily reported infectives data from the
USA; (b) The effectiveness of vaccination is demonstrated by learning the pre-vaccination and
post-vaccination epidemiology parameters using smooth daily reported infectives data from the
United Kingdom.

3.4. Data-Driven Simulation Results for Time-Varying Transmission Rate

In the EINN Algorithm A2, Mβ corresponds to the number of days mitigation is de-
layed in the data, which is equal to K in Equation (3). Mκ is the number of vaccination days.
In Figure 7a,b, time-varying transmission rates learned by the EINN Algorithm A2 are
compared with time-varying transmission rates computed using (3).
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Figure 7. Delayed-mitigation exponential time-varying rates.In (a) A learned delayed-mitigation
exponential time-varying transmission rate β is plotted for cumulative Italy COVID-19 data from 31
January 2020 to 11 December 2020. N = 60.36× 106. The plotted time-varying basic reproduction
rateRt shows the impact of lockdown and the mitigation measures post-lockdown. The relaxation
that followed is due to the COVID-19 surge and is detected in the learned β and Rt. The EINN
Algorithm A2 also learns γ = 0.0121 and µ = 0.0106. The MSE in (I) is 7.5× 10−5. In (b) A learned
delayed-mitigation exponential time-varying transmission rate β is plotted for cumulative U.S.A
COVID-19 data from 22 January 2020 to 11 December 2020. N = 328.2× 106. The time-varying
basic reproduction rate Rt is underestimated pre-lockdown. The EINN Algorithm A2 also learns
γ = 0.001 and µ = 0.0224. The MSE in (I) is 3.88× 10−4. (a) The delayed-mitigation exponential
transmission rate is learned using Equation (3) in Equation (1). We set K = 40 and we and fix ξ = 0.37
in EINN Algorithm A2. We take β0 = 0.22, obtained using early data and nonlinear regression. EINN
Algorithm A2 learns η = 0.87, the rate at which human contact decreases. (b) The delayed-mitigation
exponential transmission rate is learned using Equation (3) in Equation (1). We set K = 57 and we
fix ξ = 0.46 in EINN Algorithm A2. We take β0 = 0.279, obtained using early data and nonlinear
regression. EINN Algorithm A2 learns η = 0.60, the rate at which human contact decreases.

4. Discussion
4.1. Mitigation Measures

The COVID-19 infectives population surge witnessed in March and April 2020 around
the world forced many countries to institute strict lockdown measures. This was largely
successful in reducing theR0 in many countries, unfortunately, it also resulted in economic
hardship, such that we seek other measures that also reduce theR0 to a number less than 1.
In recent months, the measures that are promoted in most countries include contact tracing,
social distancing, and facial coverings. The epidemiological meaning of each of the model
parameters in Equation (1) including ξ are presented in Sections 3.2.1–3.2.3.

4.2. Vaccination Efficacy

In Figure 6a, using USA data, the mitigation effect of vaccination on the daily infectives
is demonstrated. Implementing Algorithm A1, we obtained κ = 0.00184, which is slightly
different from the projection of κ = 0.00305, corresponding to 1 million people vaccinated
per day. In Figure 6b, using United Kingdom data, we simulate the impact of vaccination on
the daily reported infectives, using a smoothed daily vaccination data from 13 December
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2020 to 5 February 2020 and smoothed daily reported infectives data. We implement
Algorithm A1 and we obtained κ = 0.00305. We demonstrate the impact of increased social
distancing together with the vaccination effort. Social distancing corresponds to decreasing
the transmission rate β. Increased social distancing reduces the daily reported infectives
but it extends the number of days daily infectives data is significant.

4.3. Time-Varying Transmission Rate

In Section 3.4, the delayed-mitigation exponential time-varying transmission rate
detects the impact of 2020 COVID-19 lockdown, as well as the other mitigation measures
post-lockdown using the parameter η. It is however difficult to know if η captures all the
pattern in the time-varying transmission rate as demonstrated in Figure 7a,b, i.e., whether
or not Equation (3) helps us to learn the most accurate form of β. For instance, the time-
varying basic reproduction rateRt is underestimated pre-lockdown in the USA data and
overestimated pre-lockdown in Italy data.

4.4. Error Metrics for Data-Driven Simulation

The performance of the neural network training is demonstrated in Table 10, where
the random and shuffle splits [36] have been used to generate training and test dataset. The
random split performed better than the shuffle split. In Figure 8, we present the training
and testing MSE at different epochs, depth and width.

Table 10. Error metrics for the infected cases (I) using the random and shuffle splits for Italy COVID
data, where we use 40% of the dataset for testing.

Data Split R2 Score MSE MAE Max Error

Random split 9.9994× 10−1 3.9365× 10−4 1.2440× 10−2 6.6720× 10−2

Shuffle split 9.2104× 10−1 4.4006× 10−1 4.9789× 10−1 1.3683× 100
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Figure 8. Training and testing Errors in EINN for nonlinear time-varying transmission rate.(a) MSE
at different epochs, using 3 hidden layers in both networks, learning rate 0.001, 64 neurons per
layers; (b) The MSE at different depth (numbers of hidden layers) for 30,000 epochs , 64 neurons
per layers; (c) The MSE at different width (numbers of neurons per hidden layer) for 30,000 epochs,
3 hidden layers.

5. Conclusions

We have presented a data-driven deep-learning algorithm that discovers transmission
rate patterns in an epidemiology model using cumulative and daily reported symptomatic
infective and recovered data. The algorithm predicts asymptomatic infectives and asymp-
tomatic recovered populations. The asymptomatic population is usually unreported in the
publicly available data. We learn this population from symptomatic population data. It
is demonstrated that a time-varying function models the nonlinear transmission rate. The
EINN algorithms presented, learns the nonlinear time-varying transmission rate without
a pre-assumed pattern. This approach is useful when the dynamics of an epidemiological
model is impacted by various mitigation measures. The algorithm can be adapted to most
epidemiology models.

In the proposed model, we have demonstrated the impact of public health actions on
the transmission of COVID-19. The effect of pharmaceutical mitigation measures such as
vaccination is presented. Non-pharmaceutical mitigation measures such as early detection
of symptomatic infectives population, contact tracing, and social distancing are promoted
by showing their impact on the spread of COVID-19. This study is useful in the event of a
pandemic such as COVID-19, where governmental interventions and public response and
perceptions interfere in the interaction of the compartments in an epidemiology model.
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Appendix A. EINN Algorithm for Constant Transmission Rates

We present the EINN Algorithm A1 for the asymptomatic-SIR model with constant
parameters. That is, in Equation (1), we set β(t) = β. The learned cumulative infectives
and the recovered solution is matched against the cumulative infectives and recovered data.
In this algorithm, the parameters represent average rates. We implement Algorithm A1
using publicly available COVID-19 data https://github.com/CSSEGISandData/COVID-19
accessed on 12 September 2021 [32].

Algorithm A1 EINN algorithm for Asymptomatic-SIR model with constant parameters
1: Construct EINN

specify the input: tj, j = 1, . . . , M
Initialize EINN parameter: θ
Initialize the epidemiology and vaccination parameters: λ = [β, γ, µ, ξ, κ]
Output layer: S(tj; θ; λ), I(tj; θ; λ), J(tj; θ; λ), R(tj; θ; λ), U(tj; θ; λ), j = 1, . . . , M.

2: Specify the training set
Training data: using cubic spline, generate Ĩ(tj), R̃(tj), j = 1, . . . , M and Ṽ(tj),

j = 1, . . . , Mκ . from given dataset.
Initialize the Asymptomatic population: J̃(0) = (1− ξ) Ĩ(0)/ξ and Ũ(0) = (1−

ξ)R̃(0)/ξ.
3: Train the neural network

Specify an MSE loss function:

MSE =
1
M

M

∑
j=1
||I(tj; θ; λ)− Ĩ(tj)||22 +

1
M

M

∑
j=1
||R(tj; θ; λ)− R̃(tj)||22

+
1

Mκ

Mκ

∑
j=1
||κS(tj; θ; λ)− Ṽ(tj)||22

+ ||J(0; θ; λ)− J̃(0)||22 + ||U(0; θ; λ)− Ũ(0)||22

+
1
M

6

∑
i=1

M

∑
j=1
||Li(tj; θ; λ)||22.

(A1)

Minimize the MSE loss function: compute arg min
{θ;λ}

(MSE) using an optimizer such

as the adam optimizer.
4: return EINN solution

S(tj; θ; λ), I(tj; θ; λ), J(tj; θ; λ), R(tj; θ; λ), U(tj; θ; λ), j = 1, . . . , M.
parameters: β, γ, µ, ξ, κ.

Appendix B. EINN Algorithms for Time-Varying Transmission Rate

The time-varying transmission rate is non-constant in the presence of mitigation mea-
sures in the cumulative infective data. In [4,17], it was shown that during the early phase of
the COVID-19 pandemic when the cumulative infection population grew exponentially, the
transmission rate was constant. This coincides with the period before any mitigation measure.
Incorporating measures such as social distancing, lockdown and widespread adoption of facial
covering in an epidemiology model is complex. We learn an exponentially decreasing transmis-
sion rate, we see that it takes the form of Equation (3). Our approach also detects various other
post-lockdown mitigation measures. We use EINN Algorithm A2 to learn β(t).

https://github.com/CSSEGISandData/COVID-19
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Algorithm A2 EINN algorithm for Asymptomatic-SIR model with delayed-mitigation
exponential time-varying transmission rate

1: Construct EINN
specify the input: tj, j = 1, . . . , M
Initialize EINN parameter: θ
Initialize the epidemiology and vaccination parameters: λ = [γ, µ, κ]
Output layer: S(tj; θ; λ), I(tj; θ; λ), J(tj; θ; λ), R(tj; θ; λ), U(tj; θ; λ), j = 1, . . . , M

2: construct neural network: β
specify the input: tj, j = 1, . . . , M
Initialize the neural network parameter: φ
Specify β0 obtained by nonlinear regression of early cumulative infective popula-

tion data
Initialize the exponential decay parameter: η
Output layer: β(tj; φ; η)

β(tj; φ; η) =

{
β0 0 ≤ tj ≤ Mβ

β0 exp (−ηβ(tj; φ; η)) Mβ < tj,
(A2)

3: Specify EINN training set
Training data: using cubic spline, generate Ĩ(tj) and R̃(tj), j = 1, . . . , M.
Set ξ to the value obtained for ξ from EINN Algorithm A1
Initialize the Asymptomatic population: J̃(0) = (1− ξ) Ĩ(0)/ξ and Ũ(0) = (1−

ξ)R̃(0)/ξ.
4: Train the neural networks

Specify an MSE loss function:

MSE =
1
M

M

∑
j=1
||I(tj; θ; λ)− Ĩ(tj)||22 +

1
M

M

∑
j=1
||R(tj; θ; λ)− R̃(tj)||22

+
1

Mβ

Mβ

∑
j=1
||β(tj; φ; η)− β0||22

+
1

Mκ

Mκ

∑
j=1
||κS(tj; θ)− Ṽ(tj)||22

+ ||J(0; θ; λ)− J̃(0)||22 + ||U(0; θ; λ)− Ũ(0)||22

+
1
M

6

∑
i=1

M

∑
j=1
||Li(tj; θ; φ; λ; η)||22.

(A3)

Minimize the MSE loss function: compute arg min
{θ;φ;λ;η}

(MSE) using an optimizer such

as the adam optimizer.
5: return EINN solution

S(tj; θ; λ), I(tj; θ; λ), J(tj; θ; λ), R(tj; θ; λ), U(tj; θ; λ), j = 1, . . . , M.
epidemiology parameters: γ and µ
vaccination parameter: κ

6: return time-varying epidemiology parameter:
β(tj; φ; η), j = 1, . . . , M.
Rate of human contact decrease: η.
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