
DATA-DRIVEN DEEP NEURAL NETWORKS FOR EPIDEMIOLOGICAL AND

BIOCHEMICAL MODELS

By

Kayode Daniel Olumoyin

A Dissertation

Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Computational Science

Middle Tennessee State University

May, 2022

Dissertation Committee:

Dr. Abdul Q.M. Khaliq, (Mathematical Sciences), Chair.

Dr. Wandi Ding, (Mathematical Sciences).

Dr. William Robertson, (Physics).

Dr. Chris Stephens, (Mathematical Sciences)

ABSTRACT

In recent years, the efficiency of deep neural networks to forward and inverse problems
that have found applications in biochemical and epidemiological models has been demon-
strated. In these systems, it has been observed that the system parameters fit unknown non-
linear functions. Classical models mostly assume these system parameters to be constants.
Some researchers explicitly chose a form for these nonlinear parameters using intuition and
good reasoning. In this work, we will study mathematical models with nonlinear dynam-
ics that occur in biochemical and epidemiological models and we will develop data-driven
deep learning approaches to learn the nonlinear parameters in these models and thereby
detect hidden patterns in these complex systems. In our study, we will employ a modifi-
cation of the physics-informed neural network. The modified network, which we call an
epidemiology informed neural network, allows us to predict nonlinear system parameters.
Here, multilayer perceptrons are connected to a larger multilayer perceptron that learns the
solution to a system of partial differential equations or a system of ordinary differential
equations. The Neural network approaches we present are suitable for partial differential
equations and ordinary differential equations because they are meshless and can scale to
high spatial dimensions. They can also solve forward and inverse problems with sparse
data. We enforce the physics of our model in the objective function and device efficient
methods that allows us to train with a small dataset. The adaptive neuro-fuzzy inference
system, a widely used Neural network in time series forecast, is combined with an epi-
demiology informed neural network. We demonstrate that this hybrid network is an im-
provement over the adaptive neuro-fuzzy inference system. We also demonstrate that the
epidemiology informed neural network combined with a recurrent neural network such as
the long short-term memory network provides a more accurate short-term forecast than a
plain recurrent neural network. Next, we develop an attention-based neural network that is
capable of learning nonlinear dynamics from noisy data.

ii

Dedicated to
my wife Bukola, my daughter Semilore,

my Dad Gabriel Adeniyi Olumoyin, my Mom Patricia Fehintola Olumoyin,
and to the loving memory of my brother Bolaji Olumoyin.

iii

ACKNOWLEDGMENTS

“May the LORD now show you
kindness and faithfulness, and I too
will show you the same favor because
you have done this.”

2 Samuel 2:6

I am grateful to my advisor Professor Abdul Khaliq for his patience, leadership, and
encouragement throughout my doctoral program at Middle Tennessee State University
(MTSU). I am thankful to Professor John Wallin, the program director of the Computa-
tional Science (COMS) program, for funding my studies at MTSU and for all his support
to students in the COMS program. I am indebted to Professor Khaled Furati for the count-
less meetings and his many questions that help shape this dissertation and my research
work. In the Spring of 2019, Dr. Guofei Pang visited MTSU at the invitation of Professor
Abdul Khaliq. I am grateful for those meetings our group had with Dr. Pang. I am also
thankful to the CRUNCH group at Brown University, led by Professor George Em Karni-
adakis, for the opportunity to be a part of the weekly CRUNCH seminar. I congratulate
Dr. Maziar Raissi, Dr. Paris Perdikaris, and Professor George Em Karniadakis for their
landmark paper on the Physics-informed Neural Network and their continued research on
Deep Learning.

I am thankful to Professor Wandi Ding, late Professor Tibor Koritsanszky, Professor
William Robertson, and Professor Chris Stephens for agreeing to be on my committee.
I took COMS 7840 with Professor Robertson in Fall 2019 and it is one of my favorite
experiences at MTSU. I am thankful to Dr. Joshua Phillips for granting me access to the
BIOSIM cluster. I also want to thank him for his approach to the deep learning course he
taught in Fall 2021 where I first learned about Attention mechanism models. The models
described in the dissertation were trained using the BIOSIM cluster.

The chair of the University Studies department at MTSU, Dr. Marva Lucas, was in-
strumental to my coming to MTSU in 2016, when she gave me a job as a lecturer in the
University Studies department. I am thankful for her generosity to me and my family. I am
also thankful to the following people of the University studies department for their kind-
ness over the years- Dr. Marva Lucas, Dr. Linda Clark, Dr. M.A. Higgs, Dr. Vivian Alley,
Dr. Tim Nelson, Ms. Gina Johnson, and Mr. Thomas Torku.

This pursuit has been a journey of several sacrifices for Bukola. It will pay off, I
promise.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

1 INTRODUCTION . 1

1.1 Deep Neural Networks . 2
1.2 Deep Neural Network Architectures . 5

1.2.1 Residual Neural Network (ResNet) 5
1.2.2 Recurrent Neural Network (RNN) 6
1.2.3 Attention-based Network . 6

1.3 Deep Neural Networks solvers . 7
1.3.1 Sparse Regression for Nonlinear dynamics 8
1.3.2 Physics-informed Neural Network (PINN) 9

2 LEARNING AN EPIDEMIOLOGICAL MODEL FROM DATA 13

2.1 Asymptomatic-SIR Model . 14
2.2 Epidemiology-informed Neural Network (EINN) Algorithm 17

2.2.1 Data-Driven Simulation for Non-Pharmaceutical Mitigation Mea-
sures . 23

2.2.1.1 Early Detection of Infectives 23
2.2.1.2 Social Distancing . 25
2.2.1.3 Contact Tracing of Infectives 27

2.2.2 Data-Driven Simulation for Vaccination Efficacy 28
2.3 Error Metrics for Data-Driven Simulation 30

3 LEARNING TIME-VARYING TRANSMISSION RATES of EPIDEMIOLOG-
ICAL MODELS . 32

3.1 Time-Varying Transmission Rate . 32
3.2 EINN for Time-Varying Transmission rates 33

3.2.1 Delayed-mitigation exponential Time-Varying Transmission Rate . 36
3.2.2 Piecewise time-varying transmission rate 38

3.3 Data-Driven Simulation for Time-Varying Transmission Rate 41
3.3.1 Data-Driven Simulation for Delayed-mitigation exponential Trans-

mission Rate . 41
3.3.2 Data-Driven Simulation for Piecewise Transmission Rate 43

v

4 A MULTI-VARIANT MATHEMATICAL MODEL WITH HETEROGENEOUS
TRANSMISSION RATES . 46

4.1 Multi-variant SEIR model . 47
4.1.1 Variant-based time-varying transmission rates 48
4.1.2 Well-posedness of the model . 49
4.1.3 Basic reproduction number and equilibria stability 51

4.2 EINN for SEIR model with time-varying transmission rate 53
4.3 Data-driven simulation of COVID-19 variants 57

5 FORECASTING WITH RECURRENT NEURAL NETWORK AND AN ADAP-
TIVE NEURO-FUZZY INFERENCE SYSTEM 62

5.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 62
5.2 Performance analysis of error metrics . 63
5.3 Results . 64

6 LEARNING BIOCHEMICAL MODELS FROM DATA 70

6.1 FitzHugh Nagumo (FHN) model . 70
6.2 Parameter estimation of FitzHugh Nagumo model 71

6.2.1 The Nelder-Mead algorithm . 71
6.2.2 PINN algorithm for FHN model 72

6.3 A discrete physics loss function based Neural Network 74
6.3.1 ForwardEulerNet . 75
6.3.2 PhyAttNet . 79

6.4 Learning nonlinear biochemical parameters using a modified PINN 80

7 CONCLUSION . 84

Bibliography . 85

Appendices . 92

A.1 Weierstrass Approximation Theorem . 93
B.2 Universal Approximation Theorems . 94

vi

LIST OF TABLES

Table Page

2.1 Summary table of parameters in (2.1) 16
2.2 In Figure (2.2), EINN Algorithm 1 learns the constant model parameters

β γ , µ , ξ , and R0 from 31 January 2020 to 11 December 2020 19
2.3 In Figure (2.3), EINN Algorithm 1 learns the constant model parameters

β γ , µ , ξ , and R0 from 22 January 2020 to 11 December 2020 20
2.4 In Figure (2.4), EINN Algorithm 1 learns the constant model parameters

β γ , µ , ξ , and R0 from 22 January 2020 to 11 December 2020 21
2.5 The learned parameters using EINN Algorithm 1 with fixed values of ξ

based on Italy data from 31 January 2020 to 5 September 2020. 23
2.6 The learned parameters using EINN Algorithm 1 with fixed values of ξ

based on South Korea data from 22 January 2020 to 5 September 2020. . 24
2.7 The learned parameters using EINN Algorithm 1 with fixed values of ξ

based on USA data from 22 January 2020 to 5 September 2020. 24
2.8 The learned parameters using EINN Algorithm 1 with fixed values of β

based on Italy data from 31 January 2020 to 5 September 2020 25
2.9 The learned parameters using EINN Algorithm 1 with fixed values of β

based on South Korea data from 22 January 2020 to 5 September 2020 . 26
2.10 The learned parameters using EINN Algorithm 1 with fixed values of β

based on USA data from 22 January 2020 to 5 September 2020 26
2.11 The learned parameters using EINN Algorithm 1 with fixed values of γ

based on Italy data from 31 January 2020 to 5 September 2020 27
2.12 The learned parameters using EINN Algorithm 1 with fixed values of γ

based on South Korea data from 22 January 2020 to 5 September 2020 . 27
2.13 The learned parameters using EINN Algorithm 1 with fixed values of γ

based on USA data from 22 January 2020 to 5 September 2020 28
2.14 Error metrics for the infected cases (I) using the random and shuffle

splits for Italy COVID data, where we use 40% of the dataset for testing. 30

3.1 Setting q1 = 1, EINN Algorithm 3 learns q2, q3, and q4 for Italy data
from 31 January 2020 to 11 December 2020 45

3.2 Setting q1 = 1, EINN Algorithm 3 learns q2, q3, and q4 for USA data
from 31 January 2020 to 11 December 2020 45

4.1 Summary table of parameters in model (4.1) 49
4.2 Using Alabama daily cases from March 2020 to September 2021, the

EINN Algorithm (4) learns the model parameters 58
4.3 Using Missouri daily cases from March 2020 to September 2021, the

EINN Algorithm (4) learns the model parameters 59
4.4 Using Tennessee daily cases from March 2020 to September 2021, EINN

Algorithm (4) learns the model parameters 60

vii

4.5 Using Florida daily cases from March 2020 to September 2021, EINN
Algorithm (4) learns the model parameters 61

5.1 Error metrics when random split is used to split the training and test data 64
5.2 Validation loss in the ANFIS, EINN-ANFIS, LSTM, and EINN-LSTM

forecasting technique for Alabama daily cases from March 2020 to Septem-
ber 2021. 65

5.3 Validation loss in the ANFIS, EINN-ANFIS, LSTM, and EINN-LSTM
forecasting technique for Missouri daily cases from March 2020 to Septem-
ber 2021. 65

5.4 Validation loss in the ANFIS, EINN-ANFIS, LSTM, and EINN-LSTM
forecasting technique for Tennessee daily cases from March 2020 to
September 2021. 65

5.5 Validation loss in the ANFIS, EINN-ANFIS, LSTM, and EINN-LSTM
forecasting technique for Florida daily cases from March 2020 to Septem-
ber 2021. 66

6.1 Table showing MSE error of the variable u, where we assumed a noise
free training data and set the time step to 0.01. 77

6.2 MSE of ForwardEulerNet and PhyAttNet, for 0% noise at different neu-
ral network depth . 80

6.3 MSE of ForwardEulerNet and PhyAttNet, for 5% noise at different neu-
ral network depth . 80

viii

LIST OF FIGURES

Figure Page

1.1 Schematic of a Deep Neural Network with input U = [u1,u2,u3,u4] and
output N (U) = [N1,N2,N3] . 3

1.2 Some activation functions . 4
1.3 Schematic of PINN for solving the general form PDE (1.12) 10

2.1 Compartments in Asymptomatic-SIR model with vaccination 14
2.2 Simulation of Italy COVID-19 data ; (a) The learned symptomatic in-

fectives and recovered population by the EINN Algorithm 1; (b) EINN
Algorithm 1 learns the cumulative population of Italy that are asymp-
tomatic infectives and asymptomatic recovered from 31 January 2020
to 11 December 2020 . 20

2.3 Simulation of South Korea COVID-19 data; (a) The learned symptomatic
infectives and recovered population were obtained by the EINN Algo-
rithm 1; (b) EINN Algorithm 1 learns the cumulative population of
South Korea that are asymptomatic infectives and asymptomatic recov-
ered from 22 January 2020 to 11 December 2020 21

2.4 Simulation of USA COVID-19 data; (a) The learned symptomatic infec-
tives and recovered population were obtained by the EINN Algorithm 1;
(b) EINN Algorithm 1 learns the cumulative population of USA that are
asymptomatic infectives and asymptomatic recovered from 22 January
2020 to 11 December 2020. 22

2.5 Vaccination efficacy . 29
2.6 Training and testing Errors in EINN for Italy data 31

3.1 Schematic diagram of the Epidemiology-Informed Neural Network with
nonlinear time-varying transmission rate. The term KPs represent the
known dynamics in the transmission rates pattern and ICs represent the
initial condition for the asymptomatic population. 36

3.2 Delayed-mitigation exponential time-varying rates. 42
3.3 Piecewise-constant time-varying rates. 44

4.1 Transfer diagram between the compartments 47
4.2 Schematic diagram of the Epidemiology Informed Neural Network with

nonlinear time-varying transmission rate. 54
4.3 learned Alabama Susceptible, Exposed, and Recovered daily population 58
4.4 Alabama daily cases and time-varying transmission rates 58
4.5 learned Missouri Susceptible, Exposed, and Recovered daily population 59
4.6 Missouri daily cases and time-varying transmission rates 59
4.7 learned Tennessee Susceptible, Exposed, and Recovered daily population 60
4.8 Tennessee daily cases and time-varying transmission rates 60
4.9 learned Florida Susceptible, Exposed, and Recovered daily population . 61
4.10 Florida daily cases and time-varying transmission rates 61

ix

5.1 Alabama daily cases forecasting using ANFIS, EINN-ANFIS, LSTM,
EINN-LSTM . 66

5.2 Missouri daily cases forecasting using ANFIS, EINN-ANFIS, LSTM,
EINN-LSTM . 67

5.3 Tennessee daily cases forecasting using ANFIS, EINN-ANFIS, LSTM,
EINN-LSTM . 68

5.4 Florida daily cases forecasting using ANFIS, EINN-ANFIS, LSTM,
EINN-LSTM . 69

6.1 Diagram of the nullcline and critical manifold for homgeneous FitzHugh-
Nagumo model. 71

6.2 Schematic of ForwardEulerNet . 76
6.3 No noise, △t = 0.01, 64 neurons . 77
6.4 No noise, △t = 0.025, 64 neurons . 77
6.5 No noise, △t = 0.05, 64 neurons . 77
6.6 2% noise, △t = 0.01, 64 neurons . 78
6.7 2% noise, △t = 0.01, 128 neurons . 78
6.8 5% noise, △t = 0.01, 64 neurons . 78
6.9 No noise, △t = 0.01, 64 neurons using an attention network 79
6.10 5% noise, △t = 0.01, 64 neurons using an attention network 79
6.11 A modified PINN . 81
6.12 FHN at different time step . 82
6.13 2% noisy data, nonlinear parameters 83

x

LIST OF ALGORITHMS
1 EINN algorithm for Asymptomatic-SIR model with constant parameters . . 17
2 EINN algorithm for Asymptomatic-SIR model with delayed-mitigation ex-

ponential time-varying transmission rate 37
3 EINN algorithm for Asymptomatic-SIR model with piecewise time-varying

transmission rate . 39
4 EINN algorithm for SEIR model with time-varying transmission rate 55
5 Parameter Estimation using Nelder-Mead for FHN model (6.2) 72
6 PINN algorithm for FHN model (6.2) . 74

xi

1

INTRODUCTION

“With the right features, almost any

machine learning algorithm will find

what you are looking for. Without good

features; none will.”
Unknown

In the late 1500s, Danish astronomer, Tycho Brahe collected accurate data about the

orbit of Mars. Many years later, his assistant Johannes Kepler mapped Brahe’s data to an

ellipse showing that it was mathematically possible to predict planetary motions [1]. This

was one of the earliest recorded use of a data-driven approach to formulate and discover

the governing laws of our physical and celestial world. In contrast, about 300 years after

Brahe, Joseph Fourier formulated the heat equation [2]-an example of what is called a

parabolic partial differential equation. Fourier’s work on the heat equation was a triumph

of reasoning. And for many decades, such reasoning influenced computational modeling

and the formulation of governing equations for differential equation models.

Machine Learning has been described as the field of study that gives computers the

ability to learn without being explicitly programmed [3]. In [4], Tom Mitchell describes

Machine Learning as the study of computer algorithms that improve automatically through

experience. Some of the common machine learning task includes: Classification, Regres-

sion, Machine translation, Anomaly detection [5]. For instance, in a regression task, we

may describe the accuracy of a machine learning algorithm by how much its prediction

matches a target function at domain values where the target function is known.

In recent years, we are seeing a resurgence of data-driven discovery and identification

of differential equation models [6, 7, 8, 9]. Advancements in neural networks and data

science have made it possible to learn complex patterns from data [10, 11]. This chapter

1

describes deep neural networks. In Section 1.1, we provide a mathematical introduction

of deep neural networks. In Section 1.2, we discuss the deep neural network architectures

that motivate the neural network models and solvers in this dissertation. In Section 1.3 we

provide a description of the deep neural network solvers.

1.1 Deep Neural Networks

We define a deep neural network (DNN) to be a composition of functions. Here, we con-

sider a DNN to be a neural network architecture called the Feedforward Neural Network

(FNN). The FNN is acyclic, that is, the neural network flows in one direction and it is

usually a fully connected network.

N (U ;θ) = σ(WLσ(. . .σ(W2σ(W1U +b1)+b2) . . .)+bL), (1.1)

where U = [u1,u2, . . . ,un]
T is the input vector and N (U) = [N1,N2, . . . ,Nm]

T is the

output vector. Wk and bk, k = 1, . . . ,L, are the neural network weights and biases. The neu-

ral network described in (1.1) are compositions of linear functions together with σ(·). σ is

usually a nonlinear function, it is called an activation function. It enforces some rules on the

neural network. For instance, if we want our neural network to match a non-negative target

function, we can choose a non-negative σ . There are different types of activation functions.

It is important to choose an appropriate activation function, see figure (1.2) when construct-

ing a neural network architecture. There are L−1 hidden layers in (1.1). Figure (1.1) is a

simple schematic of a deep neural network with an input layer, 2 hidden layers, and an out-

put layer. The backpropagation algorithm [11], one of the reasons deep neural networks are

successful, is used to adjust the neural network weights and biases. This is called Training

the deep neural network. The trainable parameters θ := (W1, . . . ,WL,b1,. . . ,bL) are up-

dated after each epoch. This is an optimization problem (1.2) where we find the optimal

parameters θ ∗ that yield the optimal output N of the deep neural network (1.1).

θ
∗ = argmin

θ

N (U ;θ). (1.2)

2

Figure 1.1: Schematic of a Deep Neural Network with input U = [u1,u2,u3,u4] and output
N (U) = [N1,N2,N3]

A major task in training a network is hyperparameters tuning, that is, determining the

suitable number of layers, the number of neurons per layer needed, the learning rate, the

choice of activation function, and an appropriate optimizer for the loss function [5]. FNN

has been used to learn approximate solutions to differential equations. In [12], FNN was

combined with the traditional Cox model for survival analysis to predict the clinical out-

come of COVID-19 patients. In [9], FNN was used to develop differential equation solvers

and parameter estimators by constraining the residual. This FNN is called the Physics

Informed Neural Network (PINN).

In the early 1990s, it was known that neural networks are universal approximators of

continuous functions [13]. The earliest universal approximation theorems for deep neural

networks that guarantee the approximation of any continuous function albeit under some

conditions was presented in [14, 15]. In recent years, we know of more robust approxima-

tion theorems for deep neural networks [16, 17].

3

(a) Sigmoid function, σ(x) = 1
1+e−x (b) Hyperbolic tangent function, tanh(x) =

ex−e−x

ex+e−x

(c) Rectified linear unit (ReLU) function,
max{0,x}

(d) Softplus function, ln(1+ ex)

Figure 1.2: Some activation functions

4

1.2 Deep Neural Network Architectures

If you want to Solve any task by a deep neural network, you will start by considering

which of the many neural network architectures best suit your task. Deep learning [10]

and deep neural networks have found applications in function approximation tasks, since

neural networks are known to be universal approximators of continuous functions [13, 14].

In this dissertation, we have used deep neural networks in the construction of differential

equation solvers or in the discovery of differential equations from data. In this section, we

discuss some of these deep neural network architectures.

1.2.1 Residual Neural Network (ResNet)

In [18], it is demonstrated that increasing network depth is beneficial [19]. However, merely

adding more layers to a deep network leads to higher training error [20]. A major challenge

is the vanishing and exploding gradients which hampers convergence. The problem of van-

ishing and exploding gradients has been largely addressed by normalized initialization [21]

and intermediate normalization layers. These techniques work because of the backpropa-

gation algorithm [11].

ResNet is probably the most popular neural network in the computational mathematics

community due to its resemblance to a numerical scheme, in particular, the forward Euler

scheme (1.3) [18]. This observation was first made in [22] and later by [23, 24, 25]

Yj+1 = Yj +h f (Yj,θ j), (1.3)

Where Yj+1 represents the output features of the j− th layer, θ j are the parameters of

the neural network and f is a nonlinear function.

In [26], the authors transformed (1.3) into an ODE (1.4). They called this neural net-

work architecture an ODENet.

dY (t)
dt

= f (Y (t),θ(t)). (1.4)

5

So that starting from the input layer Y (0), we can define the output layer Y (T) to be

the solution to (1.4). One challenge with this new neural network is how to backpropagate.

The way the authors fixed this is through the adjoint sensitivity method [27]. In their

paper [26] they demonstrated that ODENet performs like a continuous solution of an ODE

while ResNet performs like a discrete approximation to some ODE.

1.2.2 Recurrent Neural Network (RNN)

They are widely used in natural language processing (NLP). When unfolded into a time-

layered network, they resemble a feedforward neural network. They suffer from vanishing

and exploding gradients during backpropagation. The key limitation in recurrent neural

networks as its sequential nature, which makes the recurrent neural network very difficult

to parallelize, especially when the sequence becomes very long. This sequential nature of

the recurrent neural networks also has memory constraints during training. Even though

there have been significantly improved recurrent models [28, 29], the sequential constraints

still persist in recurrent models. RNNs have many variants like the echo state network, long

short-term memory (LSTM), and gated recurrent unit (GRU). In [30], an algorithm that

implements LSTM is presented to solve an epidemiological model and identify weekly and

daily time-varying parameters.

1.2.3 Attention-based Network

The sequential nature of the recurrent neural networks has memory constraints during train-

ing especially when the sequence becomes very long. In [31], the authors proposed a model

called the ‘Transformer’ as a viable alternative to recurrent architectures. In that, the trans-

former model relies solely on an attention mechanism to draw global dependencies between

input and output. An encoder-decoder is used to build neural sequence transduction [32].

Encoder-decoder models are auto-regressive because they use previously generated states

as additional input for generating future states.

The scaled Dot-Product Attention (1.5) consists of the dot product of a matrix Q and

6

a matrix K. The shape of Q is [nq,dk], where nq denotes the number of queries and dk

denotes the number of dimensions of each query and each key, while the shape of K is

[nk,dk], where nk is the number of keys and values. QKT is divided by some scaling factor
√

dk and then a softmax activation is applied followed by the dot product with a matrix V

with the shape [nk,dv], where dv is the number of dimensions of each value [33, 31].

Attention(Q,K,V) = so f tmax(
QKT
√

dk
)V. (1.5)

Since there are no recurrence or convolution in the ‘Transformer’, additional informa-

tion is injected into the model by adding ‘positional encodings’ to the input embeddings at

the bottoms of the encoder and decoder. These ‘positional encodings’ may allow the model

to extrapolate to sequence lengths longer than the ones used in training the model [31].

1.3 Deep Neural Networks solvers

In the past five years, there have been several deep learning frameworks geared at solving

Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs). In [34],

a deep learning algorithm is presented for simulating a noisy dynamical system using an

LSTM based network. In [35], the authors introduced a deep learning algorithm, where the

goal is to solve high-dimensional PDEs such as the Hamilton-Jacobi-Bellman equation and

the Black-Scholes equations. In their approach, as the number of parameters of the neural

network increases, the neural network minimizer approaches the ground truth.

One of the earliest implementations of a deep neural network for solving differential

equations was presented in [36]. Their approach can be summarized as follows. Suppose

we seek a solution to a partial differential equation (PDE) of the form below (1.6),

G(x,u(x),∇u(x),∇2u(x)) = 0 f or all x ∈ D ⊂ Rd, d ∈ N. (1.6)

And for a subset of the domain D, (xi)i∈I ⊂ D, where I is an index set, we define uNN

to be a neural network satisfying a system of equation (1.7)

7

G(xi,uNN(xi;θ),∇uNN(xi;θ),∇2uNN(xi;θ)) = 0 f or all i ∈ I. (1.7)

Using some collocation points, the PDE can be satisfied on a subset of the domain D.

θ corresponds to the weights and biases of this deep neural network.

1.3.1 Sparse Regression for Nonlinear dynamics

Data-driven approaches including neural networks and nonlinear regression have been used

to learn nonlinear dynamics from data [6, 7, 37, 38, 39]. In [6], the authors developed a

sparse regression algorithm for the identification of nonlinear dynamics in a dynamical

system. In [7], the authors developed machine learning algorithms for the discovery of

governing equations from data. The approach in [6, 7] is a blend of linear algebra and

sparse regression. The sparse regression approach in [7] is called PDE-FIND and it can be

described as follows, suppose we want to discover the governing equation for a discretized

dataset which have been assumed to be the solution of a PDE of the form (1.8)

ut = N(u,ux,uxx, . . . ,x, t,λ) (1.8)

Here, λ denotes the parameters in the system. PDE-FIND is a dictionary-based sparse

regression. It has the following form (1.9)

Θ(U,Q) = [1 U U2 . . . Q . . . Ux UUx . . . Q2U3Uxxx] (1.9)

Where U is the matrix containing u and Q denotes the matrix containing additional

information on u such as a time-varying function interacting with u. So for a problem of

the form (1.8), we have the linear system (1.10), where Θ contains all values of candidate

functions.

Ut = Θ(U,Q)ξ (1.10)

If it is assumed that Θ is a sufficiently rich library such that it can contain the dynamics

8

in (1.8), so that (1.9) becomes a representation of (1.8). The fit variable ξ in (1.9) is a sparse

vector that is used to pick the candidate functions in Θ that may be used to write the PDE

in (1.8). Using an algorithm called Sequential Threshold Ridge regression (STRidge) [7],

a sparse approximation to ξ is obtained (1.11)

ξ̂ = argmin
ξ

||Θ(U,Q)ξ −Ut ||22 + τ||ξ ||0 (1.11)

The performance of STRidge depends on how robust Θ is. That is, we need to have

some prior knowledge about the PDE which can be incorporated into the construction of Θ.

This sparse regression and linear dictionary framework of PDE-FIND [7] and its dynamical

system counterpart introduced in [6] called sparse identification of nonlinear dynamics

(SINDy) can be challenging in practice especially when less prior knowledge is known

about the differential system represented by the dataset.

1.3.2 Physics-informed Neural Network (PINN)

One of the most successful data-driven deep neural network in the last few years is the

physics-informed neural network (PINN) introduced in [9], where the form of the differ-

ential system is assumed to be known and the task is either to learn the parameters of the

differential system from data (inverse problem) or PINN is used as a differential system

solver (forward problem). To see how PINN works, let us consider a nonlinear partial

differential equation of the general form (1.12)

∂u(x, t)
∂ t

+N [u(x, t)] = f (x, t) x ∈ Ω, t > 0

u(x,0) = h(x), x ∈ Ω

u(x, t) = g(x, t), x ∈ ∂Ω, t > 0

(1.12)

where N [·] is a differential operator. Now suppose f and g are known at some sample

points, that is we do not know f and g entirely on the domain Ω and the boundary ∂Ω

respectively. PINN seeks to find a function uNN satisfying (1.13), here we represent the

9

weights and biases of PINN by λ .

∂uNN(x, t)
∂ t

+N [uNN(x, t;λ)] = f (x, t) x ∈ Ω, t > 0

uNN(x,0) = h(x), x ∈ Ω

uNN(x, t) = g(x, t), x ∈ ∂Ω, t > 0

(1.13)

PINN solves (1.13). We demonstrate this in Figure (1.3). In [40], the authors consider

when (1.12) is a second-order linear parabolic equations and under certain assumptions,

they show that PINN also solves (1.12).

Figure 1.3: Schematic of PINN for solving the general form PDE (1.12)

The schematic of PINN (1.3) can be described in the following steps:

1. Construct the neural network uNN(x, t;λ), where λ = {wl,bl}1≤l≤L is the set of all

weights matrices and bias vectors in the neural network. The input to this neural

network is x and t and the output of the neural network is the approximate solution

of (1.13).

2. In order to enforce the physics of the problem and make uNN satisfy the boundary

and initial conditions of the PDE, we restrict uNN to some scattered points in the

10

domain and on the boundary. These are the training points T =Tr∪Tb and Tr ∈ Ω,

Tb ∈ ∂Ω.

3. To measure the accuracy of our training, we compute the loss function defined as a

weighted summation of the L 2 norm of residuals for the PDE and the boundary and

initial conditions:

L (uNN(x, t;λ);w,T) = wrLr(uNN(x, t;λ);Tr)+wbLb(uNN(x, t;λ);Tb) (1.14)

where w = {wr,wb}, and Lr(uNN(x, t;λ);Tr) and Lb(uNN(x, t;λ);Tb) are defined

in (1.15)

Lr(uNN(x, t;λ);Tr) =
1

|Tr| ∑
(x,t)∈Tr

∥∥∥∂uNN(x, t)
∂ t

+N [uNN(x, t)]− f (x, t)
∥∥∥2

2

Lb(uNN(x, t;λ);Tb) =
1

|Tb| ∑
(x,t)∈Tb

{∥∥∥uNN(x,0)−h(x)
∥∥∥2

2
+
∥∥∥uNN(x, t)−g(x, t)

∥∥∥2

2

}
(1.15)

Regularization term can be added to (1.14) to obtain (1.16)

L (uNN ;w,wR,T) = wrLr(uNN ;Tr)+wbLb(uNN ;Tb)+wR
r Rr(uNN)+wR

b Rb(uNN)

(1.16)

where the regularization weights are wR = (wR
r ,w

R
b) and Rr(·), Rb(·) are regulariza-

tion functionals.

4. The last step is a search for ‘good’ λ ∗ by minimizing the loss function L (uNN(x, t;λ);T).

We minimize the loss function by gradient-based optimizers, such as gradient de-

scent, Adam optimizer [41], and L-BFGS [42].

In the cases when we only know f and g at a few points in the domain Ω and the bound-

ary ∂Ω respectively in (1.12), then PINN is one order more accurate than a finite difference

11

method (FDM). This is because an FDM will require interpolation to fill the missing in-

formation about f but since PINN is mesh-free, we only need some scattered points in the

domain and boundary of the PDE. We can get a good approximation with PINN even with

small information about f and g. In the case of an inverse problem, that is, solving for

some parameters such as the diffusivity term (constant or a nonlinear function) in (1.12),

FDM we will have to solve the forward problem many times but in PINN, we only add

the parameter to the loss function. We can also solve nonlinear PDEs without linearization

of the nonlinear term or use time-stepping schemes. This is because PINN uses automatic

differentiation in its loss function. In this dissertation, we present a modification of PINN

that can learn time-dependent parameters in systems of differential equations from data.

PINN has been used to simulate pandemic spread, see [43], where the epidemiology pa-

rameters were assumed to be constants [9, 44]. PINN has found application in solving

nonlinear partial differential equations from data [39]. PINN has also been used to solve

systems of ordinary differential equations [45] as well as systems of fractional differential

equations [46].

12

2

LEARNING AN EPIDEMIOLOGICAL MODEL FROM DATA

A good method, like a good spouse, is

reliable, stable, efficient.
A. Q. M. Khaliq

It has been said that “all models are

wrong but some models are

useful.”. . . Nevertheless, enormous

progress has been made by

entertaining such fictions and using

them as approximations.
George Box

The earliest infectious disease model is the SIR model [47], it is composed of interac-

tions between compartments: Susceptible, Infectious and Removed. There is a transmis-

sion rate that determines flow from the Susceptible compartment to the Infectious compart-

ment. Most mathematical models of infectious diseases take this transmission rate to be

constant. More recently, there are mathematical models of infectious diseases that take the

transmission rate to be an explicitly defined function [48, 49, 50].

In December 2019, an infectious disease began to spread throughout Wuhan, China.

The virus is the SARS-CoV-2 and the disease COVID-19. However, given that the data

we have on COVID-19 from different countries and different regions reflects transmission

patterns that are unique to each region due to the various levels of public health interven-

tions such as lockdown, social distancing, early detection of infectives, contact tracing, and

vaccination, and the public response that follows such measures [49, 51, 52, 50]. We saw

governments of different Countries initiate lock-down and lift lock-down restrictions at dif-

13

ferent stages of the pandemic and some countries did not institute any lock-down [53]. One

of the widely debated issues in the early days of the COVID-19 pandemic is the impact of

the widespread adoption of facial masks on transmission.

The SIR model has inspired several epidemiological studies of diseases like Malaria

and Dengue fever [54] and recently COVID-19. A widely used threshold parameter for

the spread or extinction of an infectious disease in an epidemiology model is the basic

reproduction number [55]. It is defined as the average number of persons an infected person

can infect. When the basic reproduction number is less than one, the infectious disease

vanishes. In the SIR model [47], the basic reproduction number is computed as the ratio of

the transmission rate to the recovery rate.

2.1 Asymptomatic-SIR Model

The asymptomatic-SIR model introduced in [56] assumes that some of the infectives are

asymptomatic infectives. This group is infectious despite not showing symptoms of COVID-

19, probably are not tested, and are usually unreported in the various publicly available

data.

Figure 2.1: Compartments in Asymptomatic-SIR model with vaccination

The asymptomatic-SIR model considers the following population compartments: the

Susceptible (S), the symptomatic Infectives (I) which correspond to the reported infectives

14

in the publicly available data, and the asymptomatic Infectives (J) which correspond to the

unreported infectives. The total infectives are I + J. The rest of the compartments are the

symptomatic Recovered (R) and the asymptomatic Recovered (U). The symptomatic In-

fectives (I) recover at the rate γ , and the asymptomatic Infectives (J) recover at the rate µ .

I recover through isolation in the hospital or at home. On the other hand, J recovers sponta-

neously. The vaccinated population, (V = κS), is a loss from the susceptible compartment:

they are added to the recovered compartments. β (t) is the time-varying transmission rate,

it usually depends on the infection vector. In the COVID-19 pandemic, β (t) depends also

on contacts between individuals. κ is the average percentage of individuals that are vac-

cinated daily. ξ represents the probability that an infective individual is reported, while

(1−ξ) is the probability that an infective is an asymptomatic infective. The portion of the

total infectives that are symptomatic and reported corresponds to ξ (I + J). On the other

hand, (1−ξ)(I+J) represents the asymptomatic infectives. N represents the total popula-

tion (2.2). It is assumed that N does not change throughout the pandemic and that infective

individuals are immediately infectious. The dynamics of the interactions between the com-

partments in Figure 2.1 can be represented by the following system of ordinary differential

equations with a time-varying transmission rate β (t).

dS(t)
dt

=− 1
N

β (t)
(

I(t)+ J(t)
)

S(t)−κS(t)

dI(t)
dt

=
1
N

β (t)ξ
(

I(t)+ J(t)
)

S(t)− γI(t)

dJ(t)
dt

=
1
N

β (t)
(

1−ξ

)(
I(t)+ J(t)

)
S(t)−µJ(t)

dR(t)
dt

= γI(t)+κξ S(t)

dU(t)
dt

= µJ(t)+κ(1−ξ)S(t).

(2.1)

The continuity equation is given by

N(t) = S(t)+ I(t)+ J(t)+R(t)+U(t), t ≥ t0. (2.2)

15

The initial conditions are denoted by S(t0) = S0, I(t0) = I0, J(t0) = J0, R(t0) = R0, and

U(t0) = U0, where t ≥ t0 represent time in days and t0 is the start date of the pandemic in

the model. The model parameters are summarized in Table 2.1.

Parameter Notation Range Remark Reference

Baseline transmission rate β0 [0,1) fitted using early data [57, 58]

Probability that an Infected person is reported ξ [0,1) constant [56]

Proportions of daily vaccinated individuals κ [0,1) constant [57, 52]

recovery rate of symptomatic infectives γ [0,1) constant [56]

recovery rate of asymptomatic infectives µ [0,1) constant [56]

Table 2.1: Summary table of parameters in (2.1)

There is an asymptomatic period for every infective individual in the range of 7 to 14

days [57]. There are also asymptomatic infectives that never show symptoms but are infec-

tious [56]. Early studies of the spread of COVID-19 show that some of the infectives are

asymptomatic infectives [59, 60] and they are mostly unreported in the publicly available

data [56]. In [61], it was reported that the asymptomatic infectives can spread the virus

efficiently, and they are the silent spreaders of COVID-19, which has caused difficulties in

the control of the pandemic. Early in the pandemic, the Centers for Disease Control and

Prevention (CDC) estimates the proportion of the asymptomatic infectives to be 40% of the

total infectives in the USA [60]. A high proportion of asymptomatic infectives was esti-

mated in [59] for China and Singapore. In [61], the proportion of Asymptomatic infectives

in Wanzhou district before 10 April 2020 was 20%. In [56], the author reported that 10%

of the total infectives were asymptomatic in northern Italy. In a study conducted in Eng-

land from June through September 2020 and in Spain from 27 April to 11 May 2020, the

proportions of asymptomatic infectives in England and Spain were reported to be 32.4%

and 33.0% respectively [62].

To overcome the limitations of statistical approaches, we present an Epidemiology-

16

Informed Neural Network (EINN) inspired by applying a PINN to epidemiology models.

Given that it may not be possible to know the most accurate form of a time-varying trans-

mission rate, the EINN algorithm is a viable option to learn the time-varying transmission

rate and detect the impact of mitigation measures from data. The EINN loss function is

extended to include some known epidemiology facts about infectious diseases. To detect

hidden details in the training data, cubic spline interpolation is used to generate sufficient

training data. EINN algorithm can capture the dynamics of the spread of the disease and

the influence of various mitigation measures. Since asymptomatic infectives population

is unreported in the publicly available data [63]. EINN algorithm learns asymptomatic

infectives population by training on symptomatic infectives data that are available in the

reported public data.

2.2 Epidemiology-informed Neural Network (EINN) Algorithm

We present the EINN Algorithm 1 for the asymptomatic-SIR model with constant param-

eters. That is, in Equation (2.1), we set β (t) = β . The learned cumulative infectives and

the recovered solution is matched against the cumulative infectives and recovered data. In

this algorithm, the parameters represent average rates. We implement Algorithm 1 using

publicly available COVID-19 data [63].

Algorithm 1 EINN algorithm for Asymptomatic-SIR model with constant parameters
1: Construct EINN

specify the input: t j, j = 1, . . . ,M

Initialize EINN parameter: θ

Initialize the epidemiology and vaccination parameters: λ = [β ,γ,µ,ξ ,κ]

Output layer: S(t j;θ ;λ), I(t j;θ ;λ), J(t j;θ ;λ), R(t j;θ ;λ), U(t j;θ ;λ), j = 1, . . . ,M.

2: Specify the training set

Training data: using cubic spline, generate Ĩ(t j), R̃(t j), j = 1, . . . ,M and Ṽ (t j),

j = 1, . . . ,Mκ . from given dataset.

Initialize the Asymptomatic population: J̃(0) = (1− ξ)Ĩ(0)/ξ and Ũ(0) = (1−

17

https://github.com/CSSEGISandData/COVID-19

ξ)R̃(0)/ξ .

3: Train the neural network

Specify an MSE loss function:

MSE =
1
M

M

∑
j=1

||I(t j;θ ;λ)− Ĩ(t j)||22 +
1
M

M

∑
j=1

||R(t j;θ ;λ)− R̃(t j)||22

+
1

Mκ

Mκ

∑
j=1

||κS(t j;θ ;λ)−Ṽ (t j)||22

+ ||J(0;θ ;λ)− J̃(0)||22 + ||U(0;θ ;λ)−Ũ(0)||22

+
1
M

6

∑
i=1

M

∑
j=1

||Li(t j;θ ;λ)||22.

(2.3)

Minimize the MSE loss function: compute argmin
{θ ;λ}

(MSE) using an optimizer such

as the adam optimizer.

4: return EINN solution

S(t j;θ ;λ), I(t j;θ ;λ), J(t j;θ ;λ), R(t j;θ ;λ), U(t j;θ ;λ), j = 1, . . . ,M.

parameters: β ,γ,µ,ξ ,κ .

It was assumed in [56] that When the transmission rate in (2.1) is constant, that is,

(β (t) = β), the basic reproduction number can be given by the ratio of the transmission rate

to a weighted sum of the symptomatic and asymptomatic recovery rates. However, we ob-

served that this under-estimate the basic reproduction number (R0) for the asymptomatic-

SIR model Equation (2.1). Assuming a disease-free equilibrium of (2.1), given by

(S∗, I∗,J∗,R∗,U∗) = (S0,0,0,0,0)

Applying the next generation matrix approach [64], the basic reproduction number (R0) is

obtained as the spectral radius of the next generation matrix FV−1, where

F =

 βξ βξ

β (1−ξ) β (1−ξ)

 , V =

γ 0

0 µ

 .

18

so that

R0 =
β (ξ µ +(1−ξ)γ)

µγ
ξ ∈ (0,1). (2.4)

If ξ = 0, R0 = β/µ , when all the infective population are asymptomatic.

If ξ = 1, R0 = β/γ , when all the infective population are symptomatic.

Using data from Italy, South Korea, and the United States starting from the date of

the first reported cases in the respective countries to the day before vaccination data were

reported. The cumulative infective and recovered population data are observed to be non-

exponential whenever a mitigation measure such as a comprehensive lockdown is detected

in the data. We take the total population N to be 60.36×106, 51.64×106, and 328.2×106

in Italy, South Korea and the USA, respectively. In Figures 2.2a–2.4a, Mκ is zero and so

κ = 0 for all the period from the first reported cases to the day before vaccination data are

reported. In addition to learning the parameters, EINN learns ξ , the probability that an

infective is reported. A high value of ξ indicates a large number of reported infectives.

Parameters Mean Std

β 0.03773 0.00276
ξ 0.55699 0.07896
γ 0.01327 0.00027
µ 0.02906 0.017478
R0 2.32770 0.06014

Table 2.2: In Figure (2.2), EINN Algorithm 1 learns the constant model parameters β γ , µ ,
ξ , and R0 from 31 January 2020 to 11 December 2020

As shown in Figures (2.2)a–(2.4)a, early in the pandemic, the cumulative infective and

recovered data closely resemble an exponential function. Cubic Spline interpolation is used

to generate 3000 training points from the cumulative symptomatic infective and recovered

data. In Tables (2.2)–(2.4) the mean and standard deviation of the the parameters β γ , µ ,

ξ , and R0 are presented after 10 runs of EINN Algorithm (1)

19

2020-Feb 2020-May 2020-Aug 2020-Nov

90

92

94

96

98

100

po
pu

la
tio

n
in

 p
er

ce
nt

ag
e

susceptible

2020-Feb 2020-May 2020-Aug 2020-Nov
0.0

0.5

1.0

1.5

2.0

2.5

3.0
symptomatic infectives

data
learned

2020-Feb 2020-May 2020-Aug 2020-Nov
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
symptomatic recovered

data
learned

(a)

2020-Jan 2020-Apr 2020-Jun 2020-Aug 2020-Nov
0.0

0.5

1.0

1.5

2.0

2.5

po
pu

la
tio

n
in

 p
er

ce
nt

ag
e

asymptomatic infectives

2020-Jan 2020-Apr 2020-Jun 2020-Aug 2020-Nov
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
asymptomatic recovered

(b)

Figure 2.2: Simulation of Italy COVID-19 data ; (a) The learned symptomatic infectives
and recovered population by the EINN Algorithm 1; (b) EINN Algorithm 1 learns the cu-
mulative population of Italy that are asymptomatic infectives and asymptomatic recovered
from 31 January 2020 to 11 December 2020

Parameters Mean Std

β 0.01537 0.00350
ξ 0.24862 0.04333
γ 0.00537 0.00013
µ 0.01174 0.00587
R0 1.84796 0.16187

Table 2.3: In Figure (2.3), EINN Algorithm 1 learns the constant model parameters β γ , µ ,
ξ , and R0 from 22 January 2020 to 11 December 2020

20

2020-Jan 2020-Apr 2020-Jul 2020-Oct
99.4

99.5

99.6

99.7

99.8

99.9

100.0

po
pu

la
tio

n
in

 p
er

ce
nt

ag
e

susceptible

2020-Jan 2020-Apr 2020-Jul 2020-Oct
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
symptomatic infectives

data
learned

2020-Jan 2020-Apr 2020-Jul 2020-Oct
0.00

0.01

0.02

0.03

0.04

0.05

0.06
symptomatic recovered

data
learned

(a)

2020-Mar 2020-May 2020-Jul 2020-Oct 2020-Dec
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

po
pu

la
tio

n
in

 p
er

ce
nt

ag
e

asymptomatic infectives

2020-Mar 2020-May 2020-Jul 2020-Oct 2020-Dec
0.00

0.05

0.10

0.15

0.20

0.25

asymptomatic recovered

(b)

Figure 2.3: Simulation of South Korea COVID-19 data; (a) The learned symptomatic in-
fectives and recovered population were obtained by the EINN Algorithm 1; (b) EINN Al-
gorithm 1 learns the cumulative population of South Korea that are asymptomatic infectives
and asymptomatic recovered from 22 January 2020 to 11 December 2020

Parameters Mean Std

β 0.02130 0.00144
ξ 0.49176 0.06541
γ 0.00437 0.000046
µ 0.01499 0.00199
R0 3.10406 0.09609

Table 2.4: In Figure (2.4), EINN Algorithm 1 learns the constant model parameters β γ , µ ,
ξ , and R0 from 22 January 2020 to 11 December 2020

21

2020-Jan 2020-Apr 2020-Jul 2020-Oct

86

88

90

92

94

96

98

100

po
pu

la
tio

n
in

 p
er

ce
nt

ag
e

susceptible

2020-Jan 2020-Apr 2020-Jul 2020-Oct
0

1

2

3

4

5
symptomatic infectives

data
learned

2020-Jan 2020-Apr 2020-Jul 2020-Oct
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

symptomatic recovered
data
learned

(a)

2020-Mar 2020-May 2020-Jul 2020-Oct 2020-Dec
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

po
pu

la
tio

n
in

 p
er

ce
nt

ag
e

asymptomatic infectives

2020-Mar 2020-May 2020-Jul 2020-Oct 2020-Dec
0

1

2

3

4

5
asymptomatic recovered

(b)

Figure 2.4: Simulation of USA COVID-19 data; (a) The learned symptomatic infectives
and recovered population were obtained by the EINN Algorithm 1; (b) EINN Algorithm
1 learns the cumulative population of USA that are asymptomatic infectives and asymp-
tomatic recovered from 22 January 2020 to 11 December 2020.

22

2.2.1 Data-Driven Simulation for Non-Pharmaceutical Mitigation Measures

The model parameters in an epidemiology model are influenced by mitigation measures.

For instance, social distancing corresponds to reducing the transmission rate by reducing

human contact. In this section, we simulate different levels of various non-pharmaceutical

mitigation measures, and we demonstrate their impact on R0 and the spread of COVID-19.

The epidemiological meaning of each of the model parameters in Equation (2.1) including

ξ are presented in Sections 2.2.1.1–2.2.1.3.

2.2.1.1 Early Detection of Infectives

Early detection of infectives population leads to higher reported infectives. This results in

an early isolation of individuals who have had contact with infective individuals. There

are no reported data for the asymptomatic infectives populations. Simulating with higher

ξ increases the symptomatic infectives population. This corresponds to higher reported

cases. Simulations are presented for Italy, South Korea, and the USA see Tables 2.5–2.7.

β γ µ βξ β (1−ξ) R0

ξ = 0.1 Mean 0.03161 0.00119 0.03125 0.00316 0.02845 4.32459
Std 0.00376 0.00047 0.02510 0.00038 0.00338 0.96941

ξ = 0.25 Mean 0.03827 0.00810 0.02418 0.00957 0.02870 2.42050
Std 0.00307 0.00122 0.00456 0.00077 0.00230 0.08582

ξ = 0.50 Mean 0.03698 0.01208 0.03253 0.01849 0.01849 2.33102
Std 0.00304 0.00152 0.02876 0.00152 0.00152 0.11068

ξ = 0.75 Mean 0.03700 0.01435 0.03027 0.02775 0.00925 2.35074
Std 0.00262 0.00122 0.01801 0.00196 0.00065 0.09155

Table 2.5: The learned parameters using EINN Algorithm 1 with fixed values of ξ based
on Italy data from 31 January 2020 to 5 September 2020.

Higher ξ values in Tables 2.5–2.7, increase the symptomatic infectives population and

reduce the asymptomatic population in general. This is reflected by the increase in the βξ

column and the corresponding decrease in the β (1− ξ) column. This means that more

23

β γ µ βξ β (1−ξ) R0

ξ = 0.1 Mean 0.01230 0.00179 0.00958 0.00123 0.01107 1.95802
Std 0.00172 0.00041 0.00304 0.00017 0.00155 0.15387

ξ = 0.25 Mean 0.01326 0.00615 0.00792 0.00332 0.00995 1.83806
Std 0.00101 0.00118 0.00148 0.00025 0.00076 0.11778

ξ = 0.50 Mean 0.01499 0.01222 0.00754 0.00749 0.00749 1.73132
Std 0.00217 0.00156 0.00269 0.00109 0.00109 0.22998

ξ = 0.75 Mean 0.01195 0.01537 0.00318 0.00896 0.00299 1.64407
Std 0.00186 0.00226 0.00224 0.00139 0.00047 0.28103

Table 2.6: The learned parameters using EINN Algorithm 1 with fixed values of ξ based
on South Korea data from 22 January 2020 to 5 September 2020.

β γ µ βξ β (1−ξ) R0

ξ = 0.25 Mean 0.02270 0.00224 0.01471 0.00568 0.01703 3.83612
Std 0.00143 0.00056 0.00119 0.00036 0.00108 0.53227

ξ = 0.50 Mean 0.02126 0.00419 0.01639 0.01063 0.01063 3.20680
Std 0.00071 0.00032 0.00239 0.00036 0.00036 0.13379

ξ = 0.75 Mean 0.02009 0.00514 0.02039 0.01507 0.00502 3.18964
Std 0.00083 0.00026 0.00465 0.00062 0.00021 0.09912

Table 2.7: The learned parameters using EINN Algorithm 1 with fixed values of ξ based
on USA data from 22 January 2020 to 5 September 2020.

24

people will be in hospitalization/isolation. This translates to more recovery in the symp-

tomatic compartment. We see that the detection of early infectives alone is not enough

to mitigate an infectious disease such as COVID-19 as demonstrated in the R0 column

in Tables 2.5–2.7. It should be combined with other measures such as contact tracing of

infectives.

2.2.1.2 Social Distancing

It is widely understood that measures such as a lockdown, social distancing, and widespread

adoption of facial coverings result in the mitigation of COVID-19. Social distancing is

often the most sought-after measure at reducing the R0. The goal of social distancing is

to reduce the average number of human contacts. This is demonstrated by reducing β ,

the transmission rate [56]. The impact of social distancing on the R0 is presented in the

following Tables 2.8–2.10.

γ ξ µ βξ β (1−ξ) R0

β = 0.1 Mean 0.01371 0.69461 0.36808 0.06946 0.03054 5.15392
Std 0.00020 0.04506 0.07684 0.00451 0.00451 0.24303

β = 0.05 Mean 0.01361 0.55675 0.30860 0.02784 0.02216 2.11654
Std 0.00000 0.00000 0.14114 0.00000 0.00000 0.00000

β = 0.025 Mean 0.01163 0.54429 0.021192 0.01361 0.01139 1.81348
Std 0.00032 0.09003 0.01164 0.00225 0.00225 0.45399

Table 2.8: The learned parameters using EINN Algorithm 1 with fixed values of β based
on Italy data from 31 January 2020 to 5 September 2020

Reducing β in Tables 2.8–2.10 correspond to a reduced symptomatic infectives popula-

tion I. There is an increase in the asymptomatic infectives population J. Social distancing is

effective when the asymptomatic infective population J diminishes. βξ and β (1−ξ) both

decreases. Social distancing should be combined with contact tracing and early detection

of infectives population.

25

γ ξ µ βξ β (1−ξ) R0

β = 0.05 Mean 0.00571 0.64985 0.16848 0.03249 0.01751 7.69632
Std 0.00229 0.18684 0.03398 0.00934 0.00934 4.61209

β = 0.025 Mean 0.00539 0.30717 0.03705 0.00768 0.01732 1.90597
Std 0.00000 0.00000 0.01178 0.00000 0.00000 0.00000

β = 0.01 Mean 0.00285 0.09468 0.00819 0.00095 0.00905 1.37149
Std 0.00103 0.07145 0.002224 0.00071 0.00071 0.48262

Table 2.9: The learned parameters using EINN Algorithm 1 with fixed values of β based
on South Korea data from 22 January 2020 to 5 September 2020

γ ξ µ βξ β (1−ξ) R0

β = 0.05 Mean 0.00398 0.32026 0.64670 0.01601 0.03399 4.53989
Std 0.00115 0.05013 0.17882 0.00251 0.00251 1.61048

β = 0.025 Mean 0.00458 0.85867 0.03475 0.02147 0.00353 3.34950
Std 0.00048 1.22557 0.01843 0.03064 0.03064 1.52165

β = 0.01 Mean 0.00314 0.59924 0.00532 0.00599 0.00401 3.52616
Std 0.00009 0.21138 0.00613 0.00211 0.00211 1.52799

Table 2.10: The learned parameters using EINN Algorithm 1 with fixed values of β based
on USA data from 22 January 2020 to 5 September 2020

26

2.2.1.3 Contact Tracing of Infectives

Contact tracing is equivalent to increasing the symptomatic recovery and asymptomatic

recovery rates [56]. However, since we do not have reported data for the asymptomatic

population, in this paper, we pursue contact tracing as an increase in the symptomatic re-

covery rate. This is equivalent to reducing the number of days an infective individual stays

infective. In Tables 2.11–2.13, the impact of contact tracing is demonstrated by increasing

the symptomatic recovery rate.

β ξ µ βξ β (1−ξ) R0

γ = 0.001 Mean 0.03235 0.37063 0.02157 0.01208 0.02027 13.05386
Std 0.00251 0.05151 0.00443 0.00245 0.00127 2.29273

γ = 0.005 Mean 0.03386 0.43284 0.02479 0.01484 0.01902 3.86667
Std 0.00372 0.08534 0.01229 0.00406 0.00258 0.50726

γ = 0.01 Mean 0.03564 0.49312 0.02306 0.01771 0.01793 2.62805
Std 0.00332 0.07613 0.00791 0.00373 0.00216 0.12344

γ = 0.05 Mean 0.04573 0.85962 0.01113 0.03924 0.00649 1.36939
Std 0.00223 0.06479 0.00436 0.00270 0.00319 0.09824

Table 2.11: The learned parameters using EINN Algorithm 1 with fixed values of γ based
on Italy data from 31 January 2020 to 5 September 2020

β ξ µ βξ β (1−ξ) R0

γ = 0.001 Mean 0.01274 0.17877 0.00811 0.00225 0.01049 3.59469
Std 0.00161 0.02628 0.00199 0.00027 0.00153 0.19821

γ = 0.005 Mean 0.01386 0.24278 0.00890 0.00335 0.01051 1.90717
Std 0.00157 0.02331 0.00261 0.00039 0.00134 0.17414

γ = 0.01 Mean 0.01410 0.27970 0.00841 0.00399 0.01012 1.74857
Std 0.00239 0.02634 0.00350 0.00097 0.00149 0.30925

γ = 0.05 Mean 0.01804 0.69863 0.00552 0.01269 0.00534 1.31972
Std 0.00309 0.08219 0.00234 0.00311 0.00137 0.27368

Table 2.12: The learned parameters using EINN Algorithm 1 with fixed values of γ based
on South Korea data from 22 January 2020 to 5 September 2020

27

β ξ µ βξ β (1−ξ) R0

γ = 0.001 Mean 0.02089 0.38780 0.01533 0.00808 0.01281 8.92979
Std 0.00091 0.04234 0.00219 0.00073 0.00127 0.60324

γ = 0.005 Mean 0.02121 0.50579 0.01446 0.01071 0.01049 2.88515
Std 0.00105 0.04284 0.00240 0.00084 0.00120 0.07506

γ = 0.01 Mean 0.02334 0.56126 0.01437 0.01308 0.01026 2.02548
Std 0.00087 0.03675 0.00156 0.00069 0.00117 0.02210

Table 2.13: The learned parameters using EINN Algorithm 1 with fixed values of γ based
on USA data from 22 January 2020 to 5 September 2020

The raising of γ in Tables 2.11–2.13, increases the symptomatic infectives population

I which is demonstrated in increased ξ and increased β . β (1− ξ) decreases while βξ

increases. This also results in a reduced R0. Contact tracing is an efficient mitigation

measure in lowering the spread of COVID-19.

The COVID-19 infectious population surge witnessed in March and April 2020 around

the world forced many countries to institute strict lockdown measures. This was largely

successful in reducing the R0 in many countries, unfortunately, it also resulted in economic

hardship, such that we seek other measures that also reduce the R0 to a number less than 1.

In recent months, the measures that are promoted in most countries include contact tracing,

social distancing, and facial covering.

2.2.2 Data-Driven Simulation for Vaccination Efficacy

The mitigation measures described in Section 2.2.1 are non-pharmaceutical measures. In

this Section, we discuss vaccination. In the fight against COVID-19, countries such as

USA and United Kingdom began to vaccinate in December 2020. A major goal of vac-

cination is to reduce the susceptible population, i.e., people recover without becoming

infected. This constitutes a pharmaceutical mitigation measure. We considered the vac-

cination data for the USA and the United Kingdom, and simulate the effectiveness of vac-

cination on the daily reported infectives. A hybrid neural network is used to simulate an

28

efficient vaccination strategy in [65]. We show that the implementation of Algorithm 1

for the asymptomatic-SIR model (2.1), we can demonstrate the efficacy of vaccination in

combination with some mitigation measures. In Figure 2.5 we present a simulation of the

effectiveness of vaccination in combination with an increase in social distancing in the

USA and in the United Kingdom.

0 100 200 300 400 500 600 700 800
days

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

po
pu

la
tio

n
in

 p
er

ce
nt

ag
e

vaccination effectiveness
smooth daily infectives
EINN daily infectives pre-vacc
daily infectives, no vacc
daily infectives, vacc rate 0.305%

0 100 200 300 400 500 600 700 800
days

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

vaccination effectiveness and increased social distancing
smooth daily infectives
EINN daily infectives pre-vacc
daily infectives, = 0.3779
daily infectives, = 0.1890
daily infectives, = 0.0945

(a) UK

0 100 200 300 400 500 600 700 800
days

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

po
pu

la
tio

n
in

 p
er

ce
nt

ag
e

vaccination effectiveness
smooth daily infectives
EINN daily infectives pre-vacc
daily infectives, no vacc
daily infectives, vacc rate 0.305%
daily infectives, vacc rate 0.184%

0 100 200 300 400 500 600 700 800
days

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

vaccination effectiveness and increased social distancing
smooth daily infectives
EINN daily infectives pre-vacc
daily infectives, = 0.2029
daily infectives, = 0.1014
daily infectives, = 0.0507

(b) USA

Figure 2.5: Vaccination efficacy

We used the USA projection of 1,000,000 daily vaccination. In the case of the ma-

genta curve, we learned κ using the daily vaccination data. The first reported case was

01/22/2020, Vaccination data were first reported on 19 December 2020. In 2.5(a) the

model is extrapolated for 2 cases. The red curve is the case of no vaccination, here κ = 0.

In the magenta curve, we learned κ using the daily vaccination data. The first reported

case was on 31 January 2020, Vaccination data were first reported on 13 December 2020.

The effectiveness of vaccination is demonstrated by learning the pre-vaccination and post-

29

vaccination epidemiology parameters using smooth daily reported infectious data from

the USA. In 2.5(b) the effectiveness of vaccination is demonstrated by learning the pre-

vaccination and post-vaccination epidemiology parameters using smooth daily reported

infectives data from the United Kingdom.

In Figure 2.5(b), using USA data, the mitigation effect of vaccination on the daily in-

fectives is demonstrated. Implementing Algorithm 1, we obtained κ = 0.00184, which is

slightly different from the projection of κ = 0.00305, corresponding to 1 million people

vaccinated per day. In Figure 2.5(a), using United Kingdom data, we simulate the impact

of vaccination on the daily reported infectives, using a smoothed daily vaccination data

from 13 December 2020 to 5 February 2020 and smoothed daily reported infectives data.

We implement Algorithm 1 and we obtained κ = 0.00305. We demonstrate the impact of

increased social distancing together with the vaccination effort. Social distancing corre-

sponds to decreasing the transmission rate β . Increased social distancing reduces the daily

reported infectives but it extends the number of days daily infectives data is significant.

2.3 Error Metrics for Data-Driven Simulation

The performance of the neural network training is demonstrated in Table 2.14, where the

random and shuffle splits [66] has been used to generate the training and testing dataset.

The random split performed better than the shuffle split. In Figure 2.6, we present the

training and testing MSE at different epochs, depths and widths. We observe that it is more

beneficial to increase the width before increasing the depth [67].

Data Split R2 score MSE MAE Max Error

Random split 9.9994×10−1 3.9365×10−4 1.2440×10−2 6.6720×10−2

Shuffle split 9.2104×10−1 4.4006×10−1 4.9789×10−1 1.3683×100

Table 2.14: Error metrics for the infected cases (I) using the random and shuffle splits for
Italy COVID data, where we use 40% of the dataset for testing.

We have presented a data-driven deep-learning algorithm that discovers transmission

30

0 5000 10000 15000 20000 25000 30000
Epochs

10 5

10 3

10 1

101

103

M
SE

Fixed Width
Train 1 Hidden layer
Test 1 Hidden layer
Train 2 Hidden layer
Test 2 Hidden layer
Train 3 Hidden layer
Test 3 Hidden layer
Train 4 Hidden layer
Test 4 Hidden layer

0 5000 10000 15000 20000 25000 30000
Epochs

10 3

10 2

10 1

100

101

102

103

104

M
SE

Fixed Depth
Train 16 Neurons per layer
Test 16 Neurons per layer
Train 32 Neurons per layer
Test 32 Neurons per layer
Train 64 Neurons per layer
Test 64 Neurons per layer

Figure 2.6: Training and testing Errors in EINN for Italy data

rate patterns in an epidemiology model using cumulative and daily reported symptomatic

infective and recovered data. The algorithm predicts asymptomatic infectives and asymp-

tomatic recovered populations. The asymptomatic population is usually unreported in the

publicly available data. The asymptomatic population is learned from the symptomatic

population data. It is demonstrated that a time-varying function models the nonlinear trans-

mission rate. The EINN algorithms presented, learns the nonlinear time-varying transmis-

sion rate without a pre-assumed pattern. This approach is useful when the dynamics of an

epidemiological model are impacted by various mitigation measures. The algorithm can be

adapted to most epidemiology models.

In the proposed model, we have demonstrated the impact of public health actions on

the transmission of COVID-19. The effect of pharmaceutical mitigation measures such as

vaccination is presented. Non-pharmaceutical mitigation measures such as early detection

of symptomatic infectious population, contact tracing, and social distancing are promoted

by showing their impact on the spread of COVID-19. This study is useful in the event of a

pandemic such as COVID-19, where governmental interventions and public response and

perceptions interfere in the interaction of the compartments in an epidemiology model.

31

3

LEARNING TIME-VARYING TRANSMISSION RATES of EPIDEMIOLOGICAL

MODELS

“Nature forms patterns. Some are

orderly in space but disorderly in time,

others orderly in time but disorderly in

space. . . . The dynamics seem so

basic—shapes changing in space and

time—yet only now are the tools

available to understand them.”
James Gleick

Time-varying transmission rates have been suggested to efficiently model the spread

of COVID-19. For example, fast methods for estimating time-varying transmission rate

were introduced in [68]; however, they reported that their method suffers from extreme

sensitivity to noise. In [58], a first-principle machine learning approach was presented to

predict time-dependent parameters, but these parameters require good initial guesses.

3.1 Time-Varying Transmission Rate

Time-varying transmission rate β (t) in (2.1) incorporates the impact of public health ac-

tions and the public response to the actions [69, 49]. The formulation of β (t) introduced

in [69] includes temperature. However, temperature is not considered as a parameter in the

formulation of β (t) presented in [49], since there is no evidence that temperature plays a

role in the transmission of COVID-19. Early in the transmission of COVID-19, the major

public health action was lockdown, which was followed by other measures such as social

distancing, contact tracing, masking, early detection of infectives, and so on. We chose a

formulation of β (t) that strongly reflects the pre and post-lockdown periods. In [70] a sig-

moid function is used to model a time-dependent decrease in the transmission of COVID-

32

19. In [56], a piecewise constant function is used to model β (t). Our formulation of

β (t) follows the approach presented in [57]. The following exponentially decreasing func-

tion (3.1) is used to represent the transmission rate β (t) in (2.1) to model the impact of

lockdown.

β (t) =


β0, 0 ≤ t ≤ K,

β0 exp(−η(t −K)), K < t
(3.1)

where K denotes the number of days between the date of the first reported case of COVID-

19 and lockdown. So K signifies the onset of government intervention including isolation,

quarantine, and lockdown. η is the rate at which human contact decreases.

When the transmission rate is time-varying, we use a modified reproduction, which we

call the time-varying reproduction Rt . This time-varying reproduction number, Rt , demon-

strates the spread pattern of COVID-19 throughout the duration of the pandemic [56].

Rt =
β (t)(ξ µ +(1−ξ)γ)

µγ
ξ ∈ (0,1). (3.2)

3.2 EINN for Time-Varying Transmission rates

EINN is a Feedforward Neural Network that includes the known epidemiology dynam-

ics in its loss function. In this chapter, EINN is adapted for the asymptomatic-SIR model

(2.1), where the Mean Square Error (MSE) of this neural network’s loss function includes

the known epidemiology dynamics such as a lockdown, while other mitigation measures

such as social distancing, and contact tracing are detected by the time-varying transmission

rate. The output of EINN are the learned solutions to the asymptomatic-SIR model (2.1)

denoted by S(t j;θ ;λ), I(t j;θ ;λ), J(t j;θ ;λ), R(t j;θ ;λ), U(t j;θ ;λ), j = 1, . . . ,M. Where

θ represents the neural network weights and biases and λ represents the epidemiology pa-

rameters. M is the number of the training set. The network representing the time-varying

transmission rate is denoted by β (t j;φ ;η), j = 1, . . . ,M, The parameter φ represents the

weights and biases of this network and η is the exponential decay parameter. The training

33

data are generated using cubic spline and denoted by Ĩ(t j), R̃(t j), j = 1, . . . ,M and Ṽ (t j),

j = 1, . . . ,Mκ from the given dataset. Here Mκ is the number of vaccination days. We ob-

serve that training data are not available for all the compartments in the asymptomatic-SIR

model; however, EINN can capture the epidemiology interactions between the compart-

ments because the epidemiology model residual is included in the MSE loss function. The

MSE loss function for EINN with the time-varying transmission rate is given by

MSE =
1
M

M

∑
j=1

||I(t j;θ ;λ)− Ĩ(t j)||22 +
1
M

M

∑
j=1

||R(t j;θ ;λ)− R̃(t j)||22

+
1

Mβ

Mβ

∑
j=1

||β (t j;φ ;η)− β̃ (t j)||22

+
1

Mκ

Mκ

∑
j=1

||κS(t j;θ ;λ)−Ṽ (t j)||22

+ ||J(0;θ ;λ)− J̃(0)||22 + ||U(0;θ ;λ)−Ũ(0)||22

+
1
M

6

∑
i=1

M

∑
j=1

||Li(t j;θ ;φ ;λ ;η)||22,

(3.3)

where the residual Li, i = 1, . . .6 is as follows

34

L1(t j;θ ;φ ;λ ;η) =
dS(t j;θ ;λ)

dt j
+

1
N

β (t j;φ ;η)
(

I(t j;θ ;λ)+ J(t j;θ ;λ)
)

S(t j;θ ;λ)

+κS(t j;θ ;λ)

L2(t j;θ ;φ ;λ ;η) =
dI(t j;θ ;λ)

dt j
− 1

N
β (t j;φ ;η)ξ

(
I(t j;θ ;λ)+ J(t j;θ ;λ)

)
S(t j;θ ;λ)

+ γI(t j;θ ;λ)

L3(t j;θ ;φ ;λ ;η) =
dJ(t j;θ ;λ)

dt j
− 1

N
β (t j;φ ;η)

(
1−ξ

)(
I(t j;θ ;λ)+ J(t j;θ ;λ)

)
S(t j;θ ;λ)

+µJ(t j;θ ;λ)

L4(t j;θ ;φ ;λ ;η) =
dR(t j;θ ;λ)

dt j
− γI(t j;θ ;λ)−κξ S(t j;θ ;λ)

L5(t j;θ ;φ ;λ ;η) =
dU(t j;θ ;λ)

dt j
−µJ(t j;θ ;λ)−κ(1−ξ)S(t j;θ ;λ)

L6(t j;θ ;φ ;λ ;η) = N − (S(t j;θ ;λ)+ I(t j;θ ;λ)+ J(t j;θ ;λ)+R(t j;θ ;λ)+U(t j;θ ;λ)).

(3.4)

In Figure 3.1, EINN includes the time-varying infection as an output of the neural net-

work. ICs represents the loss in the neural network output for the asymptomatic infectives

J(0;θ) and the asymptomatic recovered U(0;θ) at t = 0. Asymptomatic infectives at t = 0

is determined according to the formula J̃(0) = (1− ξ)Ĩ(0)/ξ . Similarly, Asymptomatic

recovered at t = 0 is determined according to the formula Ũ(0) = (1− ξ)R̃(0)/ξ . KPs

represent the known dynamics in the transmission rate pattern. M is the number of training

points. M does not necessarily correspond to the number of available data. M is generated

by fitting the data with cubic splines. For instance, Ĩ(t j), j = 1, . . . ,M is the training data

for the infectives after fitting with an interpolation function. Mβ is the number of train-

ing points used to enforce the known dynamics of the transmission rates pattern. Since

κ is the average percentage of individuals that are vaccinated daily, Mκ is the number of

vaccination days in the model, we can also describe Mκ as the number of days κ is not

zero. Ṽ (t j) = κ S̃(t j), j = 1, . . . ,Mκ , is the daily vaccination data. The input to EINN is t j,

j = 1, . . . ,M. The output of EINN solves the asymptomatic-SIR model (2.1), because they

35

are enforced in the residual (3.4).

To achieve good accuracy in the neural network, we tune the hyperparameters; such as

the number of layers, number of training points, and the learning rate. In all the simulations

presented in this paper, we used 4 hidden layers, 64 neurons per layer, and the training loss

was minimized in 40,000 iterations. Cubic splines are used to generate 3000 training points

from the original dataset. The loss function is minimized by a gradient-based optimizer

such as the adam optimizer [71].

Figure 3.1: Schematic diagram of the Epidemiology-Informed Neural Network with non-
linear time-varying transmission rate. The term KPs represent the known dynamics in the
transmission rates pattern and ICs represent the initial condition for the asymptomatic pop-
ulation.

3.2.1 Delayed-mitigation exponential Time-Varying Transmission Rate

The time-varying transmission rate is non-constant in the presence of mitigation measures

in the cumulative infective data. In [57, 52], it was shown that during the early phase of

the COVID-19 pandemic when the cumulative infection population grew exponentially,

36

the transmission rate was constant. This coincides with the period before any mitigation

measure. Incorporating measures such as social distancing, lockdown, and widespread

adoption of facial covering in an epidemiology model is complex.

We learn an exponentially decreasing time-varying transmission rate, we observe that it

takes the form of Equation (3.1). However, because we learn this time-varying transmission

rate by using a neural network, our approach also detects various other post-lockdown

mitigation measures. We use EINN Algorithm 2 to obtain β (t).

Algorithm 2 EINN algorithm for Asymptomatic-SIR model with delayed-mitigation

exponential time-varying transmission rate
1: Construct EINN

specify the input: t j, j = 1, . . . ,M

Initialize EINN parameter: θ

Initialize the epidemiology and vaccination parameters: λ = [γ,µ,κ]

Output layer: S(t j;θ ;λ), I(t j;θ ;λ), J(t j;θ ;λ), R(t j;θ ;λ), U(t j;θ ;λ), j = 1, . . . ,M

2: construct neural network: β

specify the input: t j, j = 1, . . . ,M

Initialize the neural network parameter: φ

Specify β0 obtained by nonlinear regression of early cumulative infective popula-

tion data

Initialize the exponential decay parameter: η

Output layer: β (t j;φ ;η)

β (t j;φ ;η) =


β0 0 ≤ t j ≤ Mβ

β0 exp(−ηβ (t j;φ ;η)) Mβ < t j,

(3.5)

3: Specify EINN training set

Training data: using cubic spline, generate Ĩ(t j) and R̃(t j), j = 1, . . . ,M.

Set ξ to the value obtained for ξ from EINN Algorithm 1

37

Initialize the Asymptomatic population: J̃(0) = (1− ξ)Ĩ(0)/ξ and Ũ(0) = (1−

ξ)R̃(0)/ξ .

4: Train the neural networks

Specify an MSE loss function:

MSE =
1
M

M

∑
j=1

||I(t j;θ ;λ)− Ĩ(t j)||22 +
1
M

M

∑
j=1

||R(t j;θ ;λ)− R̃(t j)||22

+
1

Mβ

Mβ

∑
j=1

||β (t j;φ ;η)−β0||22

+
1

Mκ

Mκ

∑
j=1

||κS(t j;θ)−Ṽ (t j)||22

+ ||J(0;θ ;λ)− J̃(0)||22 + ||U(0;θ ;λ)−Ũ(0)||22

+
1
M

6

∑
i=1

M

∑
j=1

||Li(t j;θ ;φ ;λ ;η)||22.

(3.6)

Minimize the MSE loss function: compute argmin
{θ ;φ ;λ ;η}

(MSE) using an optimizer

such as the adam optimizer.

5: return EINN solution

S(t j;θ ;λ), I(t j;θ ;λ), J(t j;θ ;λ), R(t j;θ ;λ), U(t j;θ ;λ), j = 1, . . . ,M.

epidemiology parameters: γ and µ

vaccination parameter: κ

6: return time-varying epidemiology parameter:

β (t j;φ ;η), j = 1, . . . ,M.

Rate of human contact decrease: η .

3.2.2 Piecewise time-varying transmission rate

A piecewise time-varying transmission rate (3.7) is used to learn a time-dependent trans-

mission rate β in eq. (2.1). In [72, 73], the piecewise β (t) is defined as follows,

38

β (t) =



β0q1 t ≤ M1

β0q2 M1 < t ≤ M2

β0q3 M2 < t ≤ M3

β0q4 M3 < t ≤ M4

...

β0qn Mn < t.

(3.7)

The goal of the parameters q1, . . . ,qn in (3.7) is to capture the exponential decrease

observed in the transmission rate β (t). We choose M1, . . . ,Mn in order to partition the

pandemic timeline, according to the onset of various mitigation measures, and we use EINN

algorithm 3 to learn q1, . . . ,qn.

Algorithm 3 EINN algorithm for Asymptomatic-SIR model with piecewise time-varying

transmission rate
1: Construct EINN

specify the input: t j, j = 1, . . . ,M

Initialize EINN parameter: θ

Initialize the epidemiology and vaccination parameters: λ = [γ,µ,κ]

Output layer: S(t j;θ ;λ), I(t j;θ ;λ), J(t j;θ ;λ), R(t j;θ ;λ), U(t j;θ ;λ), j = 1, . . . ,M

2: construct neural network: β

specify the input: t j, j = 1, . . . ,M

Initialize the neural network parameter: φ

Specify β0 obtained by nonlinear regression of early cumulative infective popula-

tion data

Initialize the decay parameters: q1,q2,q3,q4, . . . ,qn

39

Output layer: β (t j;φ ;q1,q2,q3,q4, . . . ,qn)

β (t j;φ ;q1,q2,q3,q4, . . . ,qn) =



β0q1β (t j;φ ;q1) 0 ≤ t j ≤ M1

β0q2β (t j;φ ;q2) M1 < t j ≤ M2

β0q3β (t j;φ ;q3) M2 < t j ≤ M3

β0q4β (t j;φ ;q4) M3 < t j ≤ M4

...

β0qnβ (t j;φ ;qn) Mn < t j,

(3.8)

3: Specify EINN training set

Training data: using cubic spline, generate Ĩ(t j) and R̃(t j), j = 1, . . . ,M.

Set ξ to the value obtained for ξ from EINN Algorithm 1

Initialize the Asymptomatic population: J̃(0) = (1− ξ)Ĩ(0)/ξ and Ũ(0) = (1−

ξ)R̃(0)/ξ .

4: Train the neural networks

Specify an MSE loss function:

MSE =
1
M

M

∑
j=1

||I(t j;θ ;λ)− Ĩ(t j)||22 +
1
M

M

∑
j=1

||R(t j;θ ;λ)− R̃(t j)||22

+
n

∑
i=1

1
Mi

Mi

∑
j=1

||β (t j;φ ;η)−β0||22

+
1

Mκ

Mκ

∑
j=1

||κS(t j;θ)−Ṽ (t j)||22

+ ||J(0;θ ;λ)− J̃(0)||22 + ||U(0;θ ;λ)−Ũ(0)||22

+
1
M

6

∑
i=1

M

∑
j=1

||Li(t j;θ ;φ ;λ ;η)||22.

(3.9)

Minimize the MSE loss function: compute argmin
{θ ;φ ;λ ;η}

(MSE) using an optimizer

such as the adam optimizer.

40

5: return EINN solution

S(t j;θ ;λ), I(t j;θ ;λ), J(t j;θ ;λ), R(t j;θ ;λ), U(t j;θ ;λ), j = 1, . . . ,M.

epidemiology parameters: γ and µ

vaccination parameter: κ

6: return time-varying epidemiology parameter:

β (t j;φ ;q1,q2,q3,q4, . . . ,qn), j = 1, . . . ,M.

Rate of human contact decrease: q1,q2,q3,q4, . . . ,qn.

3.3 Data-Driven Simulation for Time-Varying Transmission Rate

In this section, We present a discussion of the time-varying transmission rates obtained

using the delayed-mitigation exponential transmission rate and the piecewise transmission

rate.

3.3.1 Data-Driven Simulation for Delayed-mitigation exponential Transmission Rate

In the EINN Algorithm 2, Mβ corresponds to the number of days mitigation is delayed in

the data, which is equal to K in Equation (3.1). Mκ is the number of vaccination days.

In Figures 3.2(a) and 3.2(b), time-varying transmission rates learned by the EINN Algo-

rithm 2.

In Figure 3.2(a) A learned delayed-mitigation exponential time-varying transmission

rate β is plotted for cumulative Italy COVID-19 data from January 31, 2020 to December

11, 2020. N = 60.36× 106. The plotted time-varying basic reproduction rate Rt shows

the impact of lockdown and the mitigation measures post-lockdown. The relaxation that

followed is due to the COVID-19 surge and is detected in the learned β and Rt . The EINN

Algorithm 2 also learns γ = 0.0121 and µ = 0.0106. The MSE in (I) is 7.5× 10−5. In

Figure 3.2(b) A learned delayed-mitigation exponential time-varying transmission rate β

is plotted for cumulative U.S.A COVID-19 data from 22 January 2020 to December 11,

2020. N = 328.2× 106. The time-varying basic reproduction rate Rt is underestimated

pre-lockdown. The EINN Algorithm 2 also learns γ = 0.001 and µ = 0.0224. The MSE

41

2020-Feb 2020-May 2020-Aug 2020-Nov
0.00

0.05

0.10

0.15

0.20

Delayed-mitigation exponential time-varying rates

2020-Feb 2020-May 2020-Aug 2020-Nov
0

2

4

6

8

10

12

14

16
Time-varying reproduction number

(a) Italy

2020-Mar 2020-Jun 2020-Sep 2020-Dec

0.05

0.10

0.15

0.20

0.25

Delayed-mitigation exponential time-varying rates

2020-Mar 2020-Jun 2020-Sep 2020-Dec

5

10

15

20

25

30

35

40

Time-varying reproduction number

(b) USA

Figure 3.2: Delayed-mitigation exponential time-varying rates.

42

in (I) is 3.88× 10−4. In 3.2(a) The delayed-mitigation exponential transmission rate is

learned using Equation (3.1) in Equation (2.1). We set K = 40 and we and fix ξ = 0.37 in

EINN Algorithm 2. We take β0 = 0.22, obtained using early data and nonlinear regression.

EINN Algorithm 2 learns η = 0.87, the rate at which human contact decreases. In 3.2(b)

The delayed-mitigation exponential transmission rate is learned using Equation (3.1) in

Equation (2.1). We set K = 57 and we fix ξ = 0.46 in EINN Algorithm 2. We take β0 =

0.279, obtained using early data and nonlinear regression. EINN Algorithm 2 learns η =

0.60, the rate at which human contact decreases.

In Section 3.3.1, the delayed-mitigation exponential time-varying transmission rate de-

tects the impact of 2020 COVID-19 lockdown, as well as the other mitigation measures

post-lockdown using the parameter η . It is however difficult to know if η captures all the

pattern in the time-varying transmission rate as demonstrated in Figure 3.2a,b, i.e., whether

or not Equation (3.1) helps us to learn the most accurate form of β . For instance, the time-

varying basic reproduction rate Rt is underestimated pre-lockdown in the USA data and

overestimated pre-lockdown in Italy data.

3.3.2 Data-Driven Simulation for Piecewise Transmission Rate

In the EINN Algorithm 3, Mi,1 ≤ i ≤ n are chosen to corresponds to a partitioning in the

data. Time-varying transmission rates learned by the EINN Algorithm 3 are presented in

Figures 3.3(a) and 3.2(b). For Italy and USA data, we used the following formulation for

β (t) in Algorithm 3

β (t) =



β0q1 0 ≤ t j ≤ 20

β0q2 20 < t j ≤ 35

β0q3 35 < t j ≤ 100

β0q4 100 < t.

(3.10)

43

2020-Feb 2020-May 2020-Aug 2020-Nov
0.00

0.05

0.10

0.15

0.20

piecewise time-varying transmission rates

2020-Feb 2020-May 2020-Aug 2020-Nov
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Time-varying reproduction number

(a) Italy

2020-Mar 2020-Jun 2020-Sep 2020-Dec

0.05

0.10

0.15

0.20

0.25

piecewise time-varying transmission rates

2020-Mar 2020-Jun 2020-Sep 2020-Dec

10

20

30

40

Time-varying reproduction number

(b) USA

Figure 3.3: Piecewise-constant time-varying rates.

44

Parameters Mean Std

γ 0.00459 0.00013
µ 0.01202 0.00238
q2 0.29297 0.17053
q3 0.53369 0.16459
q4 0.49833 0.07585

Table 3.1: Setting q1 = 1, EINN Algorithm 3 learns q2, q3, and q4 for Italy data from 31
January 2020 to 11 December 2020

Parameters Mean Std

γ 0.01338 0.00062
µ 0.01700 0.00704
q2 0.73672 0.19446
q3 0.84209 0.16659
q4 0.84166 0.09445

Table 3.2: Setting q1 = 1, EINN Algorithm 3 learns q2, q3, and q4 for USA data from 31
January 2020 to 11 December 2020

45

4

A MULTI-VARIANT MATHEMATICAL MODEL WITH HETEROGENEOUS

TRANSMISSION RATES

“There are three kinds of

epidemiologist: those who can count

and those who can’t.”
Unknown

COVID-19 was first reported in China in 2019 [74], it has since become a global pan-

demic. In recent months, there have been reports of mutating variants of the virus [75].

In 2021, the dominant mutant variant of COVID-19 was the B.1.617.2 delta variant [76].

Effort to combat the spread of COVID-19 have included combinations of pharmaceutical

(vaccination and hospitalization) and non-pharmaceutical (social distancing, contact trac-

ing, and facial mask) measures.

Prior to the onset of COVID-19 mutating variants in the US, the progress seen in the

data from several states prompted the ease of the various non-pharmaceutical measures.

Amid the news that several states had vaccinated over 70% of its population and a few

states had vaccinated between 60%− 70% of its population, vaccination effort began to

slow down in many US states. As a result, the existence of mutating variants resulted

in a resurgence in cases of infections. The Center for Disease Control and Prevention

(CDC) reported that the dominant variant in the US in 2021 was the B.1.617.2 delta variant.

According to the World Health Organization (WHO), many variants were first reported in

the United Kingdom and South Africa and in recent months, the USA, Europe, China,

Brazil, and Japan have all reported mutating variant infected cases.

In this chapter, a Susceptible-Exposed-Infected-Recovered, mathematical model (SEIR)

is developed. We present a data-driven deep learning algorithm for a model consisting of

time-varying transmission rates for each active variant. Using infected daily cases data, we

46

learn the form of the time-varying transmission rates, to reveal a timeline of the impact of

mitigation measures on the transmission of COVID-19 [77, 72].

4.1 Multi-variant SEIR model

We assume that the total population N(t) = N at any given time is distributed among the

following compartments: susceptible (S), exposed (E), Infectious (Ii), i = 1, . . . ,M, and

recovered (R), where M is the number of different variants. The interaction between the

compartments is shown in Figure 4.1.

Figure 4.1: Transfer diagram between the compartments

As shown in Figure (4.1), the susceptible individuals enter the exposed compartment at

the rate 1
N ∑

M
i=1 βi(t)Ii, where βi(t) is the transmission rate of variant i. The exposed individ-

uals progress to the ith infected compartment at the rate ηi. The ith infected compartment

recover at the rate of γiIi.

We assume a natural death rate µ , given by µ = 1
LFE×365 , where LFE denotes the life

expectancy. For simplicity, it is assumed that the birth rate of the population is equal to the

death rate. The parameter η is the transmission rate from the exposed to the various infec-

tious sub-compartments, γ
−1
i is the mean symptomatic infectious period for the ith variant.

The parameter ν(t) represent the time-dependent removal rate of the vaccinated individu-

als from the susceptible compartment. We assume that any variant does not super-infect

another variant, so there are no interactions between the infectious sub-compartments.

47

Based on the transfer diagram depicted in Figure 4.1, the mathematical model for a

multi-variant COVID-19 pandemic with heterogeneous transmission rates is given by:

dS
dt

= µN − S
N

M

∑
i=1

βi(t)Ii −
(

ν(t)+µ

)
S

dE
dt

=
S
N

M

∑
i=1

βi(t)Ii − (η +µ)E

dIi

dt
= ηiE − (γi +µ)Ii, i = 1, . . . ,M

dR
dt

=
M

∑
i=1

γiIi +ν(t)S−µR

(4.1)

subject to non-negative initial conditions

S(0) = S0, E(0) = E0, Ii(0) = Ii,0, i = i, . . . ,M, R(0) = R0.

The parameter η is defined as: η = ∑
M
i=1 ηi, and the total population is

N(t) = S(t)+E(t)+
M

∑
i=1

Ii(t)+R(t).

The differential equation satisfied by the total population size is obtained by adding all

the equations in (4.1), that is, dN
dt = 0 and thus N is constant. The model parameters are

summarized in Table 4.1.

Time-varying transmission rates have been shown to efficiently model the spread of

COVID-19 [77, 68]. Next, will discuss the form of the time-varying transmission rates for

each variant.

4.1.1 Variant-based time-varying transmission rates

Time-varying transmission rates in (4.1) incorporates the impact of governmental actions,

and the public response [69]. We consider the transmission rates of the form

βi(t) = β
0
i exp(−κit), 1 ≤ i ≤ M. (4.2)

48

where κi in (4.2) is the infectiousness factor for each i th variant. However, we define (1+

τi) to be the factor by which a particular variant is more infectious than the original variant

SARS-CoV-2. And so, the following relationship exist between each mutating variant and

the SARS-CoV-2 variant, see equation (4.3).

βi(t) = β1(t)(1+ τi), 2 ≤ i ≤ M. (4.3)

In (4.3), β1(t) is the transmission rate for the original variant SARS-CoV-2. The trans-

mission rates of the subsequent mutating variants are given by βi(t), i = 2, . . . ,M, where

M represents the number of mutating COVID-19 variants. Although the publicly available

data reports the daily infected cases, there were reports that suggest hat the dominant vari-

ant, B.1.617.2 delta variant, to be twice as infectious as the original variant SARS-CoV-2.

According to CDC reports [76, 78], the delta variant accounted for 1.3% of total infected

cases in May, 2021, 9.5% in June, and in August it accounted for 93% of the total infected

cases.

Parameter Notation Range Remark Reference

Baseline transmission rate for each ith variant β 0
i [0,1) fitted from data [77]

Emigration rate µ
1

LFE×365 constant [79]

Mean latent period η−1 2−14(days) constant [79]

recovery rate for each ith variant γi [0,1) constant

infectiousness factor for each ith variant κi [0,1) constant

Table 4.1: Summary table of parameters in model (4.1)

4.1.2 Well-posedness of the model

Definition 1 ([80], Locally Lipschitz continuity). Let d1,d2 ∈ N and S be a subset of Rd1 .

A function F : S → Rd2 is Lipschitz continuous on S if there exists a nonnegative constant

L ≥ 0 such that

|F(x)−F(y)| ≤ L|x− y|, x,y ∈ S. (4.4)

49

Let U be an open subset of Rd1 , and let F : U → Rd2 . We shall call F locally Lipschitz

continuous if for every point x0 ∈ U there exists a neighborhood V of x0 such that the

restriction of F to V is Lipschitz continuous on V .

We consider a more general framework of model (4.1)

z′(t) = G(z(t)), z(0) = z0, (4.5)

where z(t) = (x1(t),x2(t), . . . ,xn(t))T and G(z(t)) = (g1(z(t)),g2(z(t)), . . . ,gn(z(t)))T , the

initial condition z0 ∈ Rn. We state the following theorem.

Theorem 4.1.1 ([80]). If G : Rn → Rn is locally Lipschitz continuous and if there exist

nonnegative constants B, K such that

|G(z(t))| ≤ K |z(t)|+B, z(t) ∈ Rn, (4.6)

then the solution of the initial value problem (4.5) exists for t > 0, and

|(z(t))| ≤ |z0| · exp(K |t|)+ B
K
· (exp(K · |t|)−1), t > 0, (4.7)

Lemma 4.1.2. For each ith variant, i ∈ {1, . . . ,M}, the time varying transmission rates

ν ,βi : [0,∞)→ [0,∞) are Lipschitz continuous and contnuously differentiable. There exists

βmin,βmax > 0 and νminνmax > 0 such that βmin ≤ βi(t) ≤ βmax, νmin ≤ ν(t) ≤ νmax for all

t.

Theorem 4.1.3. The nonlinear first order system of differential equations (4.1) has at least

one solution which exists for t ∈ [0,∞).

Proof. Let z(t) = (S(t),E(t), I1(t), . . . , IM(t),R(t))T , we can set

G : RM+3 → RM+3, z(t)→



µN − S
N ∑

M
i=1 βi(t)Ii −

(
ν(t)+µ

)
S

S
N ∑

M
i=1 βi(t)Ii − (η +µ)E

ηiE − (γi +µ)Ii, i = 1, . . . ,M

∑
M
i=1 γiIi +ν(t)S−µR


(4.8)

50

G is locally Lipschitz continuous, using supremum norm || f (t)|| := sup
t∈[a,b]

| f (t)|, we

have

||G(z(t))||= sup
t∈[0,∞)

{∣∣∣∣∣µN − S(t)
N

M

∑
i=1

βi(t)Ii(t)−
(

ν(t)+µ

)
S(t)

∣∣∣∣∣,
∣∣∣∣∣S(t)N

M

∑
i=1

βi(t)Ii − (η +µ)E(t)

∣∣∣∣∣,∣∣∣ηiE(t)− (γi +µ)Ii(t), i = 1, . . . ,M
∣∣∣, ∣∣∣ M

∑
i=1

γiIi(t)+ν(t)S(t)−µR(t)
∣∣∣}

≤ sup
t∈[0,∞)

{
µN +βmax

∣∣∣∣∣S(t)N

M

∑
i=1

Ii(t)

∣∣∣∣∣+(νmax +µ)|S(t)|,βmax

∣∣∣∣∣S(t)N

M

∑
i=1

Ii(t)

∣∣∣∣∣+(η +µ)|E(t)|,

ηi|E(t)|+(γi +µ)|Ii(t)|,γi

M

∑
i=1

|Ii(t)|+νmax|S(t)|+µ|R(t)|

}

≤ sup
t∈[0,∞)

{
µN +βmax|S(t)|+(νmax +µ)|S(t)|,βmax|S(t)|+(η +µ)|E(t)|,

ηi|E(t)|+(γi +µ)|Ii(t)|,γi

M

∑
i=1

|Ii(t)|+νmax|S(t)|+µ|R(t)|
}

≤ K||z(t)||.

So by Theorem 4.1.1, and the boundedness of the time-varying nonlinear functions from

Lemma 4.1.2, the nonlinear initial value problem 4.1 has a solution for all time.

4.1.3 Basic reproduction number and equilibria stability

The basic reproduction number R0 is the expected number of secondary infections that a

single infectious individual will generate on average within a susceptible population.

Definition 2. The disease-free equilibrium of (4.1) is given by

(S∗,E∗, I∗1 , . . . , I
∗
M,R∗) = (S0,0,0, . . . ,0,0).

The basic reproduction number R0 is calculated for the case when βi(t) = β 0
i , i ∈

{1, . . . ,M}. Applying the next-generation operator approach [64], the reproduction number

51

R0 is obtained as the spectral radius of the next generation matrix FV−1, where

F =



0 β 0
1 . . . β 0

M

0 0 . . . 0
...

...
...

...

0 0 . . . 0


, V =



η +µ 0 0 . . . 0

−η1 γ1 +µ 0 . . . 0

−η2 0 γ2 +µ . . . 0
...

...
...

...
...

−ηM 0 0 . . . γM +µ


.

The basic reproduction number R0 is computed as follows in (4.9)

R0 =
M

∑
i=1

β 0
i ηi

(γi +µ)(η +µ)
. (4.9)

Next, we analyze the local asymptotic stability of the disease-free equilibrium in Defi-

nition 2.

Theorem 4.1.4. The disease-free equilibrium (S∗,E∗, I∗1 , . . . , I
∗
M,R∗) of (4.1) is locally asymp-

totically stable if R0 < 1.

Proof. The Jacobian of the right hand side of (4.1) at the equilibrium point is given by

J =



−(ν +µ) 0 −β 0
1 −β 0

2 . . . −β 0
M 0

0 −(η +µ) β 0
1 β 0

2 . . . β 0
M 0

0 η1 −(γ1 +µ) 0 . . . 0 0

0 η2 0 −(γ2 +µ) . . . 0 0
...

...
...

...
...

...
...

0 ηM 0 0 . . . −(γM +µ) 0

ν 0 γ1 γ2 . . . γM −µ


If M = 1, the eigenvalues of the Jacobian matrix are given as follows:

λ1 =−µ,λ2 =−(ν +µ),λ3 =
1
2

(
−A−B

)
,λ4 =

1
2

(
A−B

)
.

52

where

A =
√

4β 0
1 η1 +(η1 − γ1)2,

B = η1 +2µ + γ1.

Clearly, A,B > 0 and A < B, so that λ1,λ2,λ3,λ4 < 0. Similarly, we can show negative

eigenvalues for M ≥ 2. So the disease-free equilibrium is locally asymptotically stable.

4.2 EINN for SEIR model with time-varying transmission rate

We observe that training data is not available for all the compartments in the SEIR model,

however, EINN is able to capture the epidemiology interactions between the compartments

because the epidemiology model residual is included in the MSE loss function.

The MSE loss function for EINN with the time-varying transmission rate is given by,

MSE =
1
Tδ

Tδ

∑
j=1

∣∣∣I1(t j;ψ;ρ)− Ĩ(t j)
∣∣∣2 + 1

|T −Tδ |

T

∑
j=Tδ

∣∣∣ M

∑
i=1

Ii(t j;ψ;ρ)− Ĩ(t j)
∣∣∣2

+
1
Tν

Tν

∑
j=1

∣∣∣ν(t j;ψ;ρ)−0
∣∣∣2 + 1

|T −Tν |

T

∑
j=Tν

∣∣∣ν(t j;ψ;ρ)S(t j;ψ;ρ)−Ṽ (t j)
∣∣∣2

+
M

∑
i=2

∣∣∣Ii(tδ1;ψ;ρ)− pδ1 Ĩ(tδ1)
∣∣∣2 + M

∑
i=2

∣∣∣Ii(tδ2 ;ψ;ρ)− pδ2 Ĩ(tδ2)
∣∣∣2

+
1
Tδ

M

∑
i=2

Tδ

∑
j=1

∣∣∣βi(t j;πi;κi)−0
∣∣∣2

+
1

|T −Tδ |

M

∑
i=2

T

∑
j=Tδ

∣∣∣β1(t j;π1;κ1)(1+ τi)−βi(t j;πi;κi)
∣∣∣

+
5

∑
l=1

Ll,

(4.10)

53

where the residual Ll , l = 1, . . .5, is as follows

L1 =
1
T

T

∑
j=1

∣∣∣dS(t j;ψ;ρ)

dt j
+

S(t j;ψ;ρ)

N

(M

∑
i=1

βi(t j;πi;κi)Ii(t j;ψ;ρ)
)
+
(

ν(t j;ψ;ρ)+µ

)
S(t j;ψ;ρ)−µN

∣∣∣2
L2 =

1
T

T

∑
j=1

∣∣∣dE(t j;ψ;ρ)

dt j
−

S(t j;ψ;ρ)

N

(M

∑
i=1

βi(t j;πi;κi)Ii(t j;ψ;ρ)
)
+(η +µ)E(t j;ψ;ρ)

∣∣∣2
L3 =

1
T

M

∑
i=1

T

∑
j=1

∣∣∣dIi(t j;ψ;ρ)

dt j
−ηiE(t j;ψ;ρ)+(γi +µ)Ii(t j;ψ;ρ)

∣∣∣2
L4 =

1
T

T

∑
j=1

∣∣∣dR(t j;ψ;ρ)

dt j
−

M

∑
i=1

γiIi(t j;ψ;ρ)−ν(t j;ψ;ρ)S(t j;ψ;ρ)+µR(t j;ψ;ρ)
∣∣∣2

L5 =
1
T

T

∑
j=1

∣∣∣N − (S(t j;ψ;ρ)+E(t j;ψ;ρ)+
M

∑
i=1

Ii(t j;ψ;ρ)+R(t j;ψ;ρ))
∣∣∣2.

(4.11)

where η = ∑
M
i=1 ηi, i = 1, . . .M.

Figure 4.2: Schematic diagram of the Epidemiology Informed Neural Network with non-
linear time-varying transmission rate.

54

The output of EINN are the learned solutions to the SEIR model (4.1) denoted by

S(t j;ψ;ρ), E(t j;ψ;ρ), I(t j;ψ;ρ), R(t j;ψ;ρ), j = 1, . . . ,T . Here, ψ represent the neu-

ral network weights and biases while ρ represent the epidemiology parameters and T is

the number of days in our dataset. Next, we set-up time-varying transmission rate net-

works whose outputs are βi(t j;πi;κi), j = 1, . . . ,T , for i = 1, . . . ,M. Each πi represent

the weights and biases of each ith network and κi is the infectiousness factor for each ith

variant. The training data is generated using cubicspline and denoted by Ĩ(t j) and Ṽ (t j),

j = Tν , . . . ,T . Here Tν is an integer that correspond to the vaccination start date in the

dataset. The B.1.617.2 delta variant was first reported in the USA in May, Tδ is an integer

that correspond to May 4th, 2021. We observe that training data is not available for all

the compartments in the SEIR model, however, EINN is able to capture the epidemiology

interactions between the compartments because the residual of equation (4.1) is included

in the MSE loss function.

The daily cases, the vaccinated cases, the known COVID-19 variants facts and the

transmission rates are enforced in the mean square error (MSE) (4.10), see Figure (4.2).

For instance, pδ1 and pδ2 correspond to the proportion of daily cases that was due to the

mutating variants as reported by the CDC [78].

Algorithm 4 EINN algorithm for SEIR model with time-varying transmission rate
1: Construct EINN

specify the input: t j, j = 1, . . . ,T

Initialize EINN parameter: ψ

Initialize the mathematical model parameters: ρ = [γi], i = 1, . . . ,M.

Output layer: S(t j;ψ;ρ), E(t j;ψ;ρ), I(t j;ψ;ρ), R(t j;ψ;ρ), j = 1, . . . ,T

2: construct neural networks: βi, j = 1, . . . ,M

specify the input: t j, j = 1, . . . ,T

Initialize the neural network parameter: φ

Specify β 0
i obtained by fitting daily cases

Output layers : βi(t j;πi;κi)

55

βi(t j;πi;κi) = (1+ τi)β1(t j;π1;κ1), i ≥ 2 (4.12)

3: Specify EINN training set

Training data: using cubicspline, generate Ĩ(t j) and R̃(t j), j = 1, . . . ,T .

4: Train the neural networks

Specify an MSE loss function:

MSE =
1
Tδ

Tδ

∑
j=1

∣∣∣I1(t j;ψ;ρ)− Ĩ(t j)
∣∣∣2 + 1

|T −Tδ |

T

∑
j=Tδ

∣∣∣ M

∑
i=1

Ii(t j;ψ;ρ)− Ĩ(t j)
∣∣∣2

+
1
Tν

Tν

∑
j=1

∣∣∣ν(t j;ψ;ρ)−0
∣∣∣2 + 1

|T −Tν |

T

∑
j=Tν

∣∣∣ν(t j;ψ;ρ)S(t j;ψ;ρ)−Ṽ (t j)
∣∣∣2

+
M

∑
i=2

∣∣∣Ii(tδ1 ;ψ;ρ)− pδ1 Ĩ(tδ1)
∣∣∣2 + M

∑
i=2

∣∣∣Ii(tδ2;ψ;ρ)− pδ2 Ĩ(tδ2)
∣∣∣2

+
1
Tδ

M

∑
i=2

Tδ

∑
j=1

∣∣∣βi(t j;πi;κi)−0
∣∣∣2

+
1

|T −Tδ |

M

∑
i=2

T

∑
j=Tδ

∣∣∣β1(t j;π1;κ1)(1+ τi)−βi(t j;πi;κi)
∣∣∣

+
5

∑
l=1

Ll,

(4.13)

Minimize the MSE loss function: compute argmin
{ψ;πi}

(MSE) using an optimizer such

as the L−BFGS−B.

5: return EINN solution

S(t j;ψ;ρ), E(t j;ψ;ρ), Ii(t j;ψ;ρ), R(t j;ψ;ρ), j = 1, . . . ,T , i = 1, . . . ,M.

epidemiology parameters: γi, i = 1, . . . ,M.

vaccination parameter: ν

6: return time-varying epidemiology parameter:

βi(t j;πi;κi), j = 1, . . . ,T , i = 1, . . . ,M.

Infectiousness factor: κi, i = 1, . . . ,M.

56

parameter: τi, i = 2, . . . ,M.

4.3 Data-driven simulation of COVID-19 variants

We present results of the implementation of the EINN algorithm(4) for COVID-19 data

from Alabama, Missouri, Tennessee, and Florida. We consider data from March 2020

to September 2021, during which there were two dominant variants;the original variant

SARS-CoV-2 and the delta variant (B.1.617.2). CDC report indicate that 1.3% of the total

infected cases were due to the delta variant in May 4th 2021 [78]. The EINN algorithm

learns the infected cases, and the time-varying transmission rates due to each variant. In

Table (4.2)–(4.5), pre-γ1, post-γ1, post-γ2 denote the recovery rate of people infected due

to the original variant SARS-CoV-2 before the onset of the delta variant, recovery rate of

people infected due to the original variant SARS-CoV-2 after the onset of the delta variant,

and recovery rate of people infected due to the delta variant after the onset of the delta

variant respectively.

The CDC reports that by July 31st, 2021, the proportions of infected cases that are

due to the B.1.617.2 delta variant in Alabama was 82.6%, Tennessee was 67.4%, Missouri

53.9%, and in Florida, it was 86.4% [76]. The CDC also reported that in the USA, the delta

variant accounted for about 1.3% of the infected cases.

We seek to learn τi for an ith mutating variant. For the simulations in this section, we

observed that the delta variant is a dominant mutating variant therefore we included only

two variants, the SARS-CoV-2 and the delta variant.

57

Parameters Mean Std

pre- γ1 0.02423 0.01266
post- γ1 0.00395 0.00717
post- γ2 0.00463 0.00768
η1 0.12437 0.04933
η2 0.20893 0.04933
κ1 1.07385 0.06271
κ2 1.13052 0.02809
(1+ τ) 1.22391 0.10176

Table 4.2: Using Alabama daily cases from March 2020 to September 2021, the EINN
Algorithm (4) learns the model parameters

0 100 200 300 400 500

days

4.407

4.408

4.409

4.410

4.411

4.412

4.413

po
pu

la
tio

n

1e6 susceptible

0 100 200 300 400 500

days

500

250

0

250

500

750

1000

po
pu

la
tio

n

exposed

0 100 200 300 400 500

days

489000

489500

490000

490500

491000

po
pu

la
tio

n

recovered

Figure 4.3: learned Alabama Susceptible, Exposed, and Recovered daily population

0 100 200 300 400 500

days
0

1000

2000

3000

4000

5000
daily cases

daily cases
I1 Pre variant
I1 Post variant
I2 Post variant
I1 + I2 Post variant

0 100 200 300 400 500

days
0.00

0.02

0.04

0.06

0.08

0.10

0.12

beta
1

2

Figure 4.4: Alabama daily cases and time-varying transmission rates

58

Parameters Mean Std

pre- γ1 0.02344 0.00613
post- γ1 0.00911 0.00426
post- γ2 0.02095 0.01794
η1 0.15912 0.03381
η2 0.17420 0.03383
κ1 1.01114 0.03561
κ2 1.10474 0.01358
(1+ τ) 1.15537 0.08817

Table 4.3: Using Missouri daily cases from March 2020 to September 2021, the EINN
Algorithm (4) learns the model parameters

0 100 200 300 400 500

days

5.516

5.518

5.520

5.522

5.524

po
pu

la
tio

n

1e6 susceptible

0 100 200 300 400 500

days

250

0

250

500

750

1000

1250

1500

po
pu

la
tio

n

exposed

0 100 200 300 400 500

days

612500

613000

613500

614000

614500

615000

615500

616000

po
pu

la
tio

n

recovered

Figure 4.5: learned Missouri Susceptible, Exposed, and Recovered daily population

0 100 200 300 400 500

days
0

1000

2000

3000

4000

5000

6000
daily cases

daily cases
I1 Pre variant
I1 Post variant
I2 Post variant
I1 + I2 Post variant

0 100 200 300 400 500

days
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

beta
1

2

Figure 4.6: Missouri daily cases and time-varying transmission rates

59

Parameters Mean Std

pre- γ1 0.01259 0.01111
post- γ1 0.00587 0.00821
post- γ2 0.00849 0.01081
η1 0.13721 0.03429
η2 0.19611 0.03427
κ1 1.04761 0.03035
κ2 1.13552 0.02867
(1+ τ) 1.09879 0.09738

Table 4.4: Using Tennessee daily cases from March 2020 to September 2021, EINN Algo-
rithm (4) learns the model parameters

0 100 200 300 400 500

days

6.136

6.138

6.140

6.142

6.144

6.146

6.148

po
pu

la
tio

n

1e6 susceptible

0 100 200 300 400 500

days
600

400

200

0

200

400

600

800

1000

po
pu

la
tio

n

exposed

0 100 200 300 400 500

days

682000

683000

684000

685000

po
pu

la
tio

n

recovered

Figure 4.7: learned Tennessee Susceptible, Exposed, and Recovered daily population

0 100 200 300 400 500

days
0

2000

4000

6000

8000

daily cases
daily cases
I1 Pre variant
I1 Post variant
I2 Post variant
I1 + I2 Post variant

0 100 200 300 400 500

days
0.00

0.02

0.04

0.06

0.08

0.10

0.12

beta
1

2

Figure 4.8: Tennessee daily cases and time-varying transmission rates

60

Parameters Mean Std

pre- γ1 0.02968 0.01594
post- γ1 0.00943 0.00985
post- γ2 0.00576 0.00516
η1 0.09304 0.06144
η2 0.24027 0.06143
κ1 1.03508 0.02477
κ2 1.13773 0.00892
(1+ τ) 1.12553 0.11431

Table 4.5: Using Florida daily cases from March 2020 to September 2021, EINN Algo-
rithm (4) learns the model parameters

0 100 200 300 400 500

days

1.9315

1.9320

1.9325

1.9330

1.9335

po
pu

la
tio

n

1e7 susceptible

0 100 200 300 400 500

days
3000

2000

1000

0

1000

2000

3000

4000

5000

po
pu

la
tio

n

exposed

0 100 200 300 400 500

days

2.142

2.143

2.144

2.145

2.146

2.147

2.148

2.149

2.150

po
pu

la
tio

n

1e6 recovered

Figure 4.9: learned Florida Susceptible, Exposed, and Recovered daily population

0 100 200 300 400 500

days

0

5000

10000

15000

20000

daily cases
daily cases
I1 Pre variant
I1 Post variant
I2 Post variant
I1 + I2 Post variant

0 100 200 300 400 500

days
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

beta
1

2

Figure 4.10: Florida daily cases and time-varying transmission rates

61

5

FORECASTING WITH RECURRENT NEURAL NETWORK AND AN

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

The most reliable way to forecast the

future is to try to understand the

present.
John Naisbitt

Forecasting the spread of infectious diseases in many studies are based on multiple

linear regression (MLR), ordinary least squares regression (OLSR), principal component

regression (PCR) and partial least squares regression (PLSR) and statistical methods such

as the Auto Regressive Moving Average (ARIMA) and its many variants [81, 82, 83].

These statistical methods are not optimal for nonlinear predictive task. This has motivated

a shift towards techniques that rely on neural networks and neuro-fuzzy models [84]. In this

Section, we present an hybrid neural network that combines the simplicity and nonlinear

learning capabilities of the Epidemiology-informed neural network (EINN) as well as the

fuzzy inference system (ANFIS).

Adaptive neuro-fuzzy inference system (ANFIS), an hybrid neural network itself, is a

combination of fuzzy logic and a feedforward neural network. It incorporates the advan-

tages of both methods including learning capabilities, interpretability, quick convergence,

adaptability and high accuracy. ANFIS displays excellent performance in approximation

and prediction of nonlinear relationships in various fields [85].

5.1 Adaptive Neuro-Fuzzy Inference System (ANFIS)

The Adaptive Neuro-Fuzzy Inference System (ANFIS) was introduced in [86]. It combines

a neural network with a fuzzy inference system (FIS) based on “IF-THEN” rules. One

major advantage of FIS is that it does not require knowledge of the main physical process as

62

a pre-condition. ANFIS combines FIS with a backpropagation algorithm. These techniques

provide a method for the fuzzy modeling procedure to learn from the available dataset, in

order to compute the membership function parameters that best allow the fuzzy inference

system to track the given input/output data.

To forecast the transmission of a multi-variant COVID-19, we present an efficient deep

learning forecast model which combines two neural networks, we solve the ODE system

using an Epidemiology Informed Neural Network (EINN) and we forecast using an adap-

tive neuro-fuzzy system (ANFIS), which we called the EINN-ANFIS model.

5.2 Performance analysis of error metrics

The following error metrics are used in our data driven simulation:

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
Ns

Ns

∑
i=1

(Yi − Ỹi)2

,

where Y and Ỹ are the predicted and original values, respectively.

• Mean Absolute Error (MAE):

MAE =
1
Ns

Ns

∑
i=1

|Yi − Ỹi|

.

• Mean Absolute Percentage Error (MAPE):

MAPE =
1
Ns

Ns

∑
i=1

|Yi − Ỹi

Yi
|

63

.

• Root Mean Squared Relative Error (RMSRE):

RMSRE =

√√√√ 1
Ns

Ns

∑
i=1

(
Yi − Ỹi

Yi
)2

,

Ns represents the sample size of the data.

In Table 5.1 We provide a comparison of error metrics for EINN using random splits

for the training and test data.

State RMSE MAE MAPE RMSRE

Florida 0.0076864 0.0868862 0.6259307 1.4576211
Tennessee 0.0100392 0.0795658 1.4157410 3.1137207
Alabama 0.0077280 0.0829354 0.7699850 0.2481321
Missouri 0.0083841 0.0998531 1.6570308 0.4456926

Table 5.1: Error metrics when random split is used to split the training and test data

5.3 Results

We present results of the implementation of ANFIS, EINN-ANFIS, LSTM, EINN-LSTM

for COVID-19 data from Alabama, Missouri, Tennessee, and Florida from March 2020 to

September 2021. In the ANFIS approach, We used 4 regressors, 12 membership rules, and

learning rate of 0.002. Training was done using 300 epochs, where we used the adams

optimizer and for the loss function, we used the mean square error. The EINN-ANFIS is

a hybrid neural network, where EINN is first used to train the daily cases dataset and a

second round of training is done using ANFIS. In the LSTM approach, we used 4 input

layers which corresponds to the daily cases at times t, t + 1, t + 2, and t + 3. The adams

optimizer is also used in training the LSTM with 20 epochs and the loss function also

64

uses the mean square error. In the EINN-LSTM approach, a first batch of training is done

using the EINN algorithm and then a second batch of training is done using LSTM. In

Tables (5.2)–(5.5), we present the validation loss of each method.

Method Mean Std

ANFIS 0.00048 0.00098
EINN-ANFIS 0.00032 0.00050
LSTM 0.00141 0.00004
EINN-LSTM 0.00110 0.00006

Table 5.2: Validation loss in the ANFIS, EINN-ANFIS, LSTM, and EINN-LSTM forecast-
ing technique for Alabama daily cases from March 2020 to September 2021.

Method Mean Std

ANFIS 0.00011 0.00019
EINN-ANFIS 0.00004 0.00006
LSTM 0.00333 0.00003
EINN-LSTM 0.00118 0.00012

Table 5.3: Validation loss in the ANFIS, EINN-ANFIS, LSTM, and EINN-LSTM forecast-
ing technique for Missouri daily cases from March 2020 to September 2021.

Method Mean Std

ANFIS 0.00061 0.00125
EINN-ANFIS 0.00033 0.00056
LSTM 0.00267 0.00011
EINN-LSTM 0.00183 0.00009

Table 5.4: Validation loss in the ANFIS, EINN-ANFIS, LSTM, and EINN-LSTM forecast-
ing technique for Tennessee daily cases from March 2020 to September 2021.

As can be observed from these Tables (5.2)–(5.5) EINN-ANFIS is an improvement over

ANFIS and similarly, EINN-LSTM is an improvement over LSTM.

65

0 100 200 300 400 500

days

0

1000

2000

3000

4000

po
pu

la
tio

n
ANFIS

daily cases
Train
Validation

(a) ANFIS

0 100 200 300 400 500

days

0

1000

2000

3000

4000

po
pu

la
tio

n

EINN-ANFIS
daily cases
Train
Validation

(b) EINN-ANFIS

0 100 200 300 400 500

days

0

1000

2000

3000

4000

po
pu

la
tio

n

LSTM
daily cases
Train
Validation

(c) LSTM

0 100 200 300 400 500

days

0

1000

2000

3000

4000

po
pu

la
tio

n
EINN-LSTM

daily cases
Train
Validation

(d) EINN-LSTM

Figure 5.1: Alabama daily cases forecasting using ANFIS, EINN-ANFIS, LSTM, EINN-
LSTM

Method Mean Std

ANFIS 0.00199 0.00284
EINN-ANFIS 0.00249 0.00347
LSTM 0.00169 0.00009
EINN-LSTM 0.00149 0.00014

Table 5.5: Validation loss in the ANFIS, EINN-ANFIS, LSTM, and EINN-LSTM forecast-
ing technique for Florida daily cases from March 2020 to September 2021.

66

0 100 200 300 400 500

days

0

1000

2000

3000

4000

5000

po
pu

la
tio

n

ANFIS
daily cases
Train
Validation

(a) ANFIS

0 100 200 300 400 500

days

0

1000

2000

3000

4000

5000

po
pu

la
tio

n

EINN-ANFIS
daily cases
Train
Validation

(b) EINN-ANFIS

0 100 200 300 400 500

days

0

1000

2000

3000

4000

5000

po
pu

la
tio

n

LSTM
daily cases
Train
Validation

(c) LSTM

0 100 200 300 400 500

days

0

1000

2000

3000

4000

5000

po
pu

la
tio

n

EINN-LSTM
daily cases
Train
Validation

(d) EINN-LSTM

Figure 5.2: Missouri daily cases forecasting using ANFIS, EINN-ANFIS, LSTM, EINN-
LSTM

67

0 100 200 300 400 500

days

0

2000

4000

6000

8000

po
pu

la
tio

n

ANFIS
daily cases
Train
Validation

(a) ANFIS

0 100 200 300 400 500

days

0

2000

4000

6000

8000

po
pu

la
tio

n

EINN-ANFIS
daily cases
Train
Validation

(b) EINN-ANFIS

0 100 200 300 400 500

days

0

2000

4000

6000

8000

po
pu

la
tio

n

LSTM
daily cases
Train
Validation

(c) LSTM

0 100 200 300 400 500

days

0

2000

4000

6000

8000

po
pu

la
tio

n

EINN-LSTM
daily cases
Train
Validation

(d) EINN-LSTM

Figure 5.3: Tennessee daily cases forecasting using ANFIS, EINN-ANFIS, LSTM, EINN-
LSTM

68

0 100 200 300 400 500

days

0

5000

10000

15000

20000

po
pu

la
tio

n

ANFIS
daily cases
Train
Validation

(a) ANFIS

0 100 200 300 400 500

days

0

5000

10000

15000

20000

25000

30000

po
pu

la
tio

n

EINN-ANFIS
daily cases
Train
Validation

(b) EINN-ANFIS

0 100 200 300 400 500

days

0

5000

10000

15000

20000

po
pu

la
tio

n

LSTM
daily cases
Train
Validation

(c) LSTM

0 100 200 300 400 500

days

0

5000

10000

15000

20000

po
pu

la
tio

n

EINN-LSTM
daily cases
Train
Validation

(d) EINN-LSTM

Figure 5.4: Florida daily cases forecasting using ANFIS, EINN-ANFIS, LSTM, EINN-
LSTM

69

6

LEARNING BIOCHEMICAL MODELS FROM DATA

“All the world’s a differential equation,

and the men and women are merely

variables.”
Ben Orlin

6.1 FitzHugh Nagumo (FHN) model

FHN is a simplification of the Hodgkin-Huxley model [87]. It describes interaction be-

tween u, membrane potential, which is a voltage-like variable having cubic nonlinearity

and v a recovery variable having a linear dynamics that provides a slower negative feed-

back.

The partial differential equation version of FHN is given below:

∂u
∂ t

=
1
c
(u− 1

3
u3 − v)+△u

∂v
∂ t

= c(u−av+b)
(6.1)

The parameters satisfies the following inequalities, 0 < a < 1, b > 0, c > 0. An ap-

propriate initial condition is chosen by finding an homogeneous solution of (6.1), which

satisfies the ordinary differential equations below:

du
dt

=
1
c
(u− 1

3
u3 − v)

dv
dt

= c(u−av+b)
(6.2)

Setting a = 0.5, b = 0.75, c = 0.3, the equilibrium solution of (6.2) is (ue,ve) as shown

in Figure (6.1).

We consider the following initial conditions u(x,0) and v(x,0) for system (6.1) given

as follows:

70

2 1 0 1 2

u

2.0

1.5

1.0

0.5

0.0

0.5

1.0

v

(u_e,v_e)

Nullclines
Critical manifold

Figure 6.1: Diagram of the nullcline and critical manifold for homgeneous FitzHugh-
Nagumo model.

u(x,0) = u0(x),v(x,0) = v0(x)

where,

u0(x) =


ue if x ≥ L

2

−ue if x < L
2

v0(x) =−ve

and x ∈ [0,L].

6.2 Parameter estimation of FitzHugh Nagumo model

We start by providing a comparison between an optimization technique and the physics-

informed neural network (PINN) in a parameter estimation task.

6.2.1 The Nelder-Mead algorithm

This approach is a classical example of how we find parameters (usually constants) in a dy-

namical system model. Here we used synthetic data, which we obtained by randomization

of the numerical solution obtained from an ODE-solver on the FHN model (6.2) and where

we took the initial conditions for the membrane potential and the recovery variable to be

71

u(0) = 2, v(0) = −2 respectively. The exact model parameters were a = 0.5, b = 0.75,

c = 0.3.

This optimization approach is taken from pp 442 in [88], where the Error function is

given by

E(c,b) =
n

∑
i=1

{|u(ti)−ui|2 + |v(ti)− vi|2} (6.3)

and where, we take (ti,ui) and (ti,vi) to be the training data, in our case, the synthetic

data, and where u(t) and v(t) are the predicted solutions from our implementation of algo-

rithm 5. It is assumed that we know one of the parameters (a = 0.5), and we used a fitting

method to recover the values of the other two parameters c and b. After 56 iterations, we

obtained the parameters to be c = 0.309626 and b = 0.7255445.

Algorithm 5 Parameter Estimation using Nelder-Mead for FHN model (6.2)
1: fix a = 0.5 ▷ one of the system parameters
2: using the exact parameters c = 0.3 and b = 0.75
3: choose a coarse time step k = 0.25 and m = max iteration
4: set z(0) = [2,−2] ▷ Initial conditions
5: [û, v̂] = rk4(t,z(0),k,m,c,b)
6: set tspan = [t0, t f inal], dt = ti+1 − ti,
7: Construct an interpolation function using û, v̂ to generate ui,vi
8: [upred,vpred] = rk4(tspan,z(0),dt,m,cguess,bguess)
9: E(cguess,bguess) = ∑

n
i=1{|upred(ti)−ui|2 + |vpred(ti)− vi|2}

10: obtain cguess,bguess using the nelder-mead algorithm ▷ go to line 8 until
E(cguess,bguess) is minimized

11: return cguess, bguess

6.2.2 PINN algorithm for FHN model

Parameter identification with the PINN algorithm is an inverse problem. We solve the FHN

model (6.2) for the system parameter from data. The goal here is to find the best network

parameters λ (lambda represent the network weights and biases) that minimizes the loss

function

L (λ ;m) = Lr(λ ;mr)+Lb(λ ;mb) (6.4)

72

Lr(λ ;mr) is called the residual loss and Lb(λ ;mb) is the training loss. m = mr ∪mb in

the total number of training dataset. We define the following:

Lr(λ ;mr) =
1

mr

2

∑
j=1

mr

∑
i=1

|r j(ti)|2 (6.5)

where

r1(t) =
duNN(t)

dt
− 1

c
(uNN(t)−

1
3

vNN(t)3 − vNN(t))

r2(t) =
dvNN(t)

dt
− c(uNN(t)−a vNN(t)+b)

(6.6)

and

Lb(λ ;mb) =
1

mb

{ mb

∑
i=1

|uNN(ti)−u(ti)|2 +
mb

∑
i=1

|vNN(ti)− v(ti)|2
}

(6.7)

Physics-informed neural network only admits t as input, and the outputs are uNN and

vNN . The network is trained to minimize (6.4), that is an optimizer such as the Adams has

found the most optimal weights and biases that minimizes (6.4). Then the neural network

also finds optimal values for the model parameters. In the loss function, u(ti) and v(ti) are

the training data. We have embedded the physics into the residual in form of the ODE

system and the initial conditions is also embedded into the training loss.

Using 3 hidden layers and 32 neurons per layer, after 2000 iterations and using noisy

training data(here obtained from an ODE solver), PINN recover the system parameters

a = 0.48684078, b = 0.74607641 and c = 0.30332789.

73

Algorithm 6 PINN algorithm for FHN model (6.2)
1: construct a NN ▷ input t, output uNN and vNN

2: initialize parameters λ of the NN

3: speci f y the training dataset m = mr ∪mb of the NN

4: speci f y a loss function L (λ ,mr,mb) = L (λ ,mr)+L (λ ,mb)

5: where L (λ ,mr) =
1

mr
∑

2
j=1 ∑

mr
i=1 |r j(ti)|2

6: and L (λ ,mb) =
1

mb
∑

mb
i=1 |uNN(ti)−u(ti)|2 +∑

mb
i=1 |vNN(ti)− v(ti)|2}

7: r1(t) =
duNN(t)

dt − 1
c (uNN(t)− 1

3uNN(t)3 − vNN(t))

8: r2(t) =
dvNN(t)

dt + c(uNN(t)−a vNN(t)+b)

9: until minm{L (λ ;m)} ▷ obtain optimal λ that minimizes L (λ ;m)

10: [uNN ,vNN]→ [u,v] for m large ▷ u and v are the target

11: The NN also recovers the model parameters a, b, c

6.3 A discrete physics loss function based Neural Network

Physics-informed neural network is generally limited to low-dimensional parameter iden-

tification. It has not performed well in modeling PDEs with sharp gradients, and it has

become necessary to use collocation points in the PDE residuals. This results in a huge

computational cost in training. However, in a true sense of learning PDEs and ODEs from

data, we require approaches that do not assume that the form of the PDE is known. The

following works have succeeded in modeling PDEs from data, where the form of the PDE

is not assumed to be known [89] and [90]. In Section (6.3), we propose a forward Euler

method using an attention mechanism and we will demonstrate that this neural network is

an improvement over a feedforward neural network

We build the neural network as follows:

1. Formulate a neural network, This network is used to learn the dynamics of the

PDE/ODE from a data.

2. Imposition of initial and boundary conditions so that we can have a well-posed opti-

74

mization problem during the training.

3. A residual PDE connection inspired by the forward-Euler scheme will be used to

construct the loss function. If we seek to improve the network, we will have to use

higher-order temporal schemes to design the loss function. The use of higher-order

temporal schemes will require changes in the network architecture. In Section (6.3),

we want to demonstrate that a loss function built using a forward Euler temporal

scheme in the network formulation is capable to learn the form of a PDE/ODE from

data to high accuracy.

We consider the general form of a multi-dimensional, nonlinear, coupled PDE system

of the form

ut(x, t) = F [u,u2, . . . ,ux,uxx, . . . ;λ] (6.8)

where u(x, t) is the physical quantity we want to study. The temporal domain is t ∈

[0,T] and the spatial domain is x ∈ Ω ⊂ R. ut(x, t) is the first-order time derivative term

and ux denotes the gradient operator with respect to the spatial variable x. F [·] is the

nonlinear functional parameterized by λ . Eq (6.8) satisfies appropriate initial and boundary

conditions.

6.3.1 ForwardEulerNet

We will learn the FitzHugh-Nagumo system (FHN) [91, 92] from data. We consider (6.2)

in 1 spatial dimensions, and t > 0.Here, we assume only a temporal domain t ∈ [0,T], and

u denotes the variables (u,v). In this approach, we do not assume the form of the right hand

side of (6.2). Suppose û is the target variable for which there is a known measurements, we

can formulate a neural network that take as input; û, and the temporal domain t ∈ [0,T].

The output of this neural network is the learned right hand side of (6.2) denoted as F . This

neural network is a feedforward neural network(6.2).

75

Figure 6.2: Schematic of ForwardEulerNet

The loss function can then be formulated as follows

R(t;θ) = ût −F [t, û, . . . ;λ ,θ] (6.9)

A discrete loss is used in training the neural network, where the discrete F is given

by N . The discrete loss function is inspired by the forward Euler method to connect the

temporal state ûi and temporal state ûi+1.

ûi+1 = ûi +∂ t ·N [û;θ], ∂ t =
T
K
,K ∈ R+ (6.10)

The trainable parameters θ are optimized during training of the forward-Euler based

neural network that minimizes the mean squared error loss function (MSE) given as follows

MSE =
K

∑
i=1

|− ûi+1 + ûi +∂ t ·N [û;θ]|2, ∂ t =
T
K
,K ∈ R+ (6.11)

When training is done, we obtain N , which is the learned dynamics of an ODE system

such as eq (6.2). Now to obtain learned u denoted as upred , we use an ODE solver such.

Using a solver such as the scipy odeint. We observe that the learned model parameters

λ = [a,b,c] in eq (6.2) are embedded into the dynamics N .

upred = odeint(N ,(u(0),v(0)), tspan)

In Figures (6.3)–(6.8), we obtained upred and compared with the target û. In Fig-

ure (6.8), we observe that when we add 5% noise to the training data, we are no longer

able to learn an accurate dynamics of (6.2) from data.

When tuning the hyperparameters of a neural network, we observe in Table (6.1) that

76

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.01, 1 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.01, 2 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.01, 3 hidden layer(64)

u pred
v pred
u data
v data

Figure 6.3: No noise, △t = 0.01, 64 neurons

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.025, 1 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2
 u

, v

noise = 0.00, time-step = 0.025, 2 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.025, 3 hidden layer(64)

u pred
v pred
u data
v data

Figure 6.4: No noise, △t = 0.025, 64 neurons

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.05, 1 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.05, 2 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.05, 3 hidden layer(64)

u pred
v pred
u data
v data

Figure 6.5: No noise, △t = 0.05, 64 neurons

Hidden layers 32 Neurons 64 Neurons 128 Neurons 256 Neurons

1 7.6e-03 4.3e-03 1.3e-03 2.3e-03
2 4.8e-03 3.0e-03 2.3e-03 3.53-03
3 4.9e-03 4.4e-03 2.8e-03 3.3e-03

Table 6.1: Table showing MSE error of the variable u, where we assumed a noise free
training data and set the time step to 0.01.

77

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.02, time-step = 0.01, 1 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.02, time-step = 0.01, 2 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.02, time-step = 0.01, 3 hidden layer(64)

u pred
v pred
u data
v data

Figure 6.6: 2% noise, △t = 0.01, 64 neurons

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.02, time-step = 0.01, 1 hidden layer(128)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.02, time-step = 0.01, 2 hidden layer(128)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.02, time-step = 0.01, 3 hidden layer(128)

u pred
v pred
u data
v data

Figure 6.7: 2% noise, △t = 0.01, 128 neurons

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.05, time-step = 0.01, 1 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.05, time-step = 0.01, 2 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t
5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

 u
, v

noise = 0.05, time-step = 0.01, 3 hidden layer(64)

u pred
v pred
u data
v data

Figure 6.8: 5% noise, △t = 0.01, 64 neurons

78

it is more beneficial to increase the width (neurons per layer) before increasing the depth

(number of hidden layers).

6.3.2 PhyAttNet

Due to ForwardEulerNet’s failure to learn the dynamics in (6.2) when there is a significant

amount of noise in the training data, we propose a modification to ForwardEulerNet, where

we replace the feedforward neural network in (6.2) with a scaled Dot-Product attention

mechanism [33], we call this new neural network PhyAttNet. We observe that in the case

of no noise, ForwardEulerNet performs better than PhyAttNet, however, when we add 5%

noise to the training data, PhyAttNet is able to learn the dynamics in (6.2) much better than

ForwardEulerNet, see Figures (6.9),(6.10), when we increase the neural network depth as

demonstrated in the mean square errors presented in Tables (6.2)–(6.3).

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.01, 1 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.01, 2 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.00, time-step = 0.01, 3 hidden layer(64)

u pred
v pred
u data
v data

Figure 6.9: No noise, △t = 0.01, 64 neurons using an attention network

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.05, time-step = 0.01, 1 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t
2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

 u
, v

noise = 0.05, time-step = 0.01, 2 hidden layer(64)

u pred
v pred
u data
v data

0 2 4 6 8 10 12 14

 t

2

1

0

1

2

 u
, v

noise = 0.05, time-step = 0.01, 3 hidden layer(64)

u pred
v pred
u data
v data

Figure 6.10: 5% noise, △t = 0.01, 64 neurons using an attention network

79

Neural Network u1h u2h u3h

ForwardEulerNet 0.08593 0.00837 0.00036
PhyAttNet 0.25513 0.38623 0.39366

Table 6.2: MSE of ForwardEulerNet and PhyAttNet, for 0% noise at different neural net-
work depth

Neural Network u1h u2h u3h

ForwardEulerNet 0.52710 3.53157 2.75154
PhyAttNet 1.44995 35.26668 0.09301

Table 6.3: MSE of ForwardEulerNet and PhyAttNet, for 5% noise at different neural net-
work depth

6.4 Learning nonlinear biochemical parameters using a modified PINN

It has been widely observed that the physics-informed neural network is capable of learning

approximate solutions to PDEs and ODE from data. We demonstrate in this section that

in the case of a noisy data, the model parameters in (6.1) are nonlinear functions. We

implement a modified PINN algorithm see Figure (6.11) with x ∈ Ω = [0,L], where L > 0.

We minimizes the following loss function

L (λ ;m) = Lr(λ ;mr)+Lb(λ ;mb) (6.12)

where,

Lr(λ ;mr) =
1

mr

2

∑
k=1

mr

∑
i=1

mr

∑
j=1

|rk(xi, t j)|2 (6.13)

and

r1(x, t) =
∂uNN(x, t)

∂ t
− 1

c
(uNN(x, t)−

1
3

vNN(x, t)3 − vNN(x, t))

r2(x, t) =
∂vNN(x, t)

∂ t
− c(uNN(x, t)−a vNN(x, t)+b).

(6.14)

The data loss is specified as follows:

80

Lb(λ ;mb) =
1

mb

{ mb

∑
i=1

mb

∑
j=1

|uNN(xi, t j)−u(xi, t j)|2 +
mb

∑
i=1

mb

∑
j=1

|vNN(xi, t j)− v(xi, t j)|2
}
(6.15)

The modified Physics-informed neural network in Figure (6.11) admits x, and t as input,

and the outputs are uNN and vNN . However, since we want to learn nonlinear biochemical

functions a(x, t), b(x, t), and c(x, t) from data, we construct 3 more feedforward neural

networks that takes as input uNN and vNN and outputs a, b, and c respectively. This modified

network is trained to minimize equation (6.12).

In figure (6.12), we present a comparison between solution obtained by PINN and the

modified PINN. In Figure (6.13), we present the solution obtained by the modified PINN

and the nonlinear parameters learned from noisy data. Here the training data is obtained

by solving (6.1) by a finite difference method and where we have used Neumann boundary

conditions.

Figure 6.11: A modified PINN

81

 x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

 u
, v

FHN, t=0
u data
v data
u pinn
v pinn
u modified pinn
v modified pinn

 x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

 u
,v

FHN, t=0.10
u data
v data
u pinn
v pinn
u modified pinn
v modified pinn

 x

1.0

0.5

0.0

0.5

1.0

1.5

 u
,v

FHN, t=1
u data
v data
u pinn
v pinn
u modified pinn
v modified pinn

 x

1.0

0.5

0.0

0.5

1.0

1.5

 u
,v

FHN, t=2
u data
v data
u pinn
v pinn
u modified pinn
v modified pinn

 x
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

 u
,v

FHN, t=4
u data
v data
u pinn
v pinn
u modified pinn
v modified pinn

 x
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

 u
,v

FHN, t=8
u data
v data
u pinn
v pinn
u modified pinn
v modified pinn

0 5 10 15 20 25 30 35 40

 x
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

 u
,v

FHN, t=10
u data
v data
u pinn
v pinn
u modified pinn
v modified pinn

0 5 10 15 20 25 30 35 40

 x
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

 u
,v

FHN, t=15
u data
v data
u pinn
v pinn
u modified pinn
v modified pinn

0 5 10 15 20 25 30 35 40

 x
2.0

1.5

1.0

0.5

0.0

0.5

 u
,v

FHN, t=18, dt=0.3

u data
v data
u pinn
v pinn
u modified pinn
v modified pinn

Figure 6.12: FHN at different time step

82

x
0

5
10

15
20

25
30

35
40

t

0

200

400

600

800

1000

u

2.0
1.5
1.0
0.5

0.0
0.5
1.0

1.5

 modified pinn

x
0

5
10

15
20

25
30

35
40

t

0

200

400

600

800

1000

v

0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.0

 modified pinn

x0 5 10 15 20 25 30 35 40
t

0

200

400

600

800

1000

a

1.25
1.00
0.75
0.50
0.25

0.00
0.25

 modified pinn

x0 5 10 15 20 25 30 35 40
t

0

200

400

600

800

1000

b

0.77
0.78
0.79

0.80

0.81

0.82

 modified pinn

x0 5 10 15 20 25 30 35 40
t

0

200

400

600

800

1000

c

0.295
0.300
0.305
0.310
0.315
0.320

 modified pinn

Figure 6.13: 2% noisy data, nonlinear parameters

83

7

CONCLUSION

“Oh falcon, do not be scared of this

gusts of wind hitting at you, they are

only meant to take you higher”
Muhammad Iqbal

In this dissertation, we set out to discover hidden patterns in spatio-temporal data that

have been observed to be reaction-diffusion systems. The data-driven deep learning algo-

rithms we present do not make prior assumptions about the system parameters, instead, we

learn these parameters from data. Our approach discovers more detailed governing equa-

tions from data for biochemical and epidemiological models. To the best of our knowledge,

this is the first work where data-driven deep learning algorithms have been used to discover

time-dependent system parameters in reaction-diffusion systems and in Differential equa-

tion models. We have also presented deep learning algorithms that have the capability

to learn heterogeneous time-dependent transmission rates due to the presence of multi-

ple variants/strain of an infectious disease outbreak. In order to ameliorate the challenges

that arise when performing forecasting task with non-smooth data, we present hybrid deep

learning approaches that improves the forecast capabilities of recurrent neural networks

and an adaptive neuro-fuzzy inference system.

84

Bibliography

[1] S. Hawkings. The Illustrated On the Shoulders of Giants: The Great Works of Physics
and Astronomy. Running Press, 2004.

[2] J. Fourier. Theorie Analytique de la Chaleur. Firmin Didot (reissued by Cambridge
University Press), 1822.

[3] A. Samuel. Some studies in machine learning using the game of checkers. IBM J.
Res. Dev., 3:210–229, 1959.

[4] T.M. Mitchell. Machine learning. McGraw-Hill, New York, 1997.

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, Cambridge,
2016.

[6] S.L. Brunton, J.L. Proctor, and J.N. Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113:3932 – 3937, 2016.

[7] S.H. Rudy, S.L. Brunton, J.L. Proctor, and J.N. Kutz. Data-driven discovery of partial
differential equations. Science Advances, 3:e1602614, 2017.

[8] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Inferring solutions of differen-
tial equations using noisy multi-fidelity data. Journal of Computational Physics,
335:736–746, 2017.

[9] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning: A
deep learning framework for solving forward and inverse problems involving nonlin-
ear partial differential equations. Journal of Computational Physics, 378:686–707,
2019.

[10] Y. LeCun, Y. Bengio, and G.E. Hinton. Deep learning. Nature, 521:436–444, 2015.

[11] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Parallel Distributed Processing.
MIT Press, 1987.

[12] W. Liang, J. Yao, A. Chen, and et al. Early triage of critically ill COVID-19 patients
using deep learning. Nature Communications, 11:3543, 2020.

[13] G. Cybenko. Approximation by superposition of a sigmoidal function. Mathematics
of control, signals and systems, 1989.

[14] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991.

[15] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural Net-
works, 6(6):861 – 867, 1993.

85

[16] B. Hanin. Universal function approximation by deep neural nets with bounded width
and relu activations. arXiv:1708.02691, 2017.

[17] P. Kidger and T. Lyons. Universal approximation with deep narrow networks. Con-
ference on Learning Theory, 2020.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
arXiv:1512.03385v1 [cs.CV], 2015.

[19] I. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. ICML, 2015.

[20] R.K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks.
arXiv:1505.00387, 2015.

[21] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural network. AISTATS, 2010.

[22] E. Weinan. A proposal on machine learning via dynamical systems. Communications
in Mathematical Science, 5:1 – 11, 2017.

[23] E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse
Problems, 2017.

[24] L. Ruthotto and E. Haber. Deep neural networks motivated by partial differential
equations. Preprint arXiv:1804.04272v2, 2018.

[25] E. Haber, K. Lensink, E. Treister, and L. Ruthotto. Imexnet- a forward stable deep
neural. Preprint arXiv:1903.02639v2, 2019.

[26] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary
differential equations. 32nd Conference on Neural Information Processing Systems
(NeurIPS 2018), 2018.

[27] L.S. Pontryagin, V.G. Boltyanskii, r.V. Gamkrelidze, and E.F. Mischenko. The math-
ematical theory of optimal processes. Wiley Interscience, 1962.

[28] N. Shazeer, A. Mirhoseini, A. Maziarz, K. Davis, Q. Le, and G Hinton. Out-
rageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv:1701.06538, 2017.

[29] O. Kuchaiev and B. Ginsburg. Factorization tricks for LSTM networks.
arXiv:1703.10722, 2017.

[30] J. Long, A.Q.M Khaliq, and K.M. Furati. Identification and prediction of time-varying
parameters of COVID-19 model: a data-driven deep learning approach. International
Journal of Computer Mathematics, 98:1617–1632, 2021.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. arXiv:1706.03762v5, 2017.

86

[32] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y Bengio.
Learning phrase representations using rnn encoder-decoder for statistical machine
translation. CoRR, page abs/1406.1078, 2014.

[33] A. Géron. Hands-on machine learning with scikit-learn, keras & TensorFlow.
O’Reilly, 2019.

[34] K. Yeo and I. Melnyk. Deep learning algorithm for data-driven simulation of noisy
dynamical system. Journal of Computational Physics, 376:1212 – 1231, 2019.

[35] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339 – 1364, 2018.

[36] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordi-
nary and partial differential equations. arXiv:physics/9705023v1, 1997.

[37] M. Raissi, P. Perdikaris, , and G. E. Karniadakis. Multistep neural networks for data-
driven discovery of nonlinear dynamical systems. Preprint arXiv:1801.0126v1, 2018.

[38] W. Jin, E. T. Shah, C. J. Pennington, S. W. McCue, L. K. Chopin, and M. J. Simpson.
Reproducibility of sratch assays is affected by the initial degree of confluence: Exper-
iments, modelling and model selection. Journal of Theoretical Biology, 390:136–145,
2016.

[39] J. H. Lagergren, J. T. Nardini, R. E. Baker, M. J. Simpson, and K. B Flores.
Biologically-informed neural networks guide mechanistic modeling from sparse ex-
perimental data. PLoS Computational Biology, 16(12):e1008462, 2020.

[40] Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence of physics informed
neural networks for linear second-order elliptic and parabolic type pdes. Preprint
arXiv:2004.01806v2, 2020.

[41] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representation, 2015.

[42] R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing, 16:1190 – 1208,
1995.

[43] M. Raissi, N. Ramezani, and P. Seshaiyer. On parameter estimation approaches for
predicting disease transmission through optimization, deep learning and statistical
inference methods. Letters in Biomathematics, 6(2):1–26, 2019.

[44] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367:1026–1030, 2020.

[45] A. Yazdani, Lu Lu, M. Raissi, and George. E. Karniadakis. Systems biology informed
deep learning for inferring parameters and hidden dynamics. PLoS Computational
Biology, 16(11):e1007575, 2020.

87

[46] E. Kharazmi, M. Cai, X. Zheng, G. Lin, and G. E. Karniadakis. Identifiability and
predictability of integer- and fractional-order epidemiological models using physics-
informed neural networks. medRxiv, 2021.

[47] W.O. Kermack and A.G. McKendrick. A contribution to the mathematical theory of
epidemics. Proceedings of the Royal Soceity A: Mathematical, Physical and Engi-
neering Sciences, 115:700 – 721, 1921.

[48] Z. Liu, P. Magal, O. Seydi, and G. Webb. Predicting the cumulative number of cases
for the covid-19 epidemic in china from early data. medRxiv preprint, 2020.

[49] Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S.S. Musa, M.H. Wang, Y. Cai, W. Wang,
L. Yang, and D. He. A conceptual model for the coronavirus disease 2019 (COVID-
19) outbreak in Wuhan, China with individual reaction and governmental action. In-
ternational journal of Infectious diseases, 93:211–216, 2020.

[50] S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang,
E. Kostelich, and A. B. Gummel. To mask or not to mask: Modeling the poten-
tial for the face mask use by the general public to curtail the COVID-19 pandemic.
Infectious Disease Modelling, 5:293–308, 2020.

[51] K-M Tam, N Walker, and J Moreno. Effect of mitigation measures on the spread-
ing of COVID-19 in hard-hit states in the U.S. PLoS Computational Biology,
15(11):e0240877, 2020.

[52] Z. Liu, P. Magal, O. Seydi, and G. Webb. Understanding unreported cases in the
COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public
health interventions. biology, 9(3), 2020.

[53] J. Kaplan, L. Frias, and M. McFall-Johnsen. Countries around the world are reopening
- here’s our list of how they’re doing it and who remains under lockdown. Business
Insider, 2020.

[54] L.M. Stolerman, D. Coombs, and S. Boatto. SIR-Network model and its application
to dengue fever. SIAM Journal on Applied Mathematics, 75(6):2581–2609, 2015.

[55] P. Magal, G. Webb, and Y. Wu. On the basic reproduction number of reaction-
diffusion epidemic models. SIAM Journal on Applied Mathematics, 79(1):284–304,
2019.

[56] G. Gaeta. A simple SIR model with a large set of asymptomatic infectives. Mathe-
matics in Engineering, 3(2):1–39, 2021.

[57] Z. Liu, P. Magal, O. Seydi, and G. Webb. Predicting the cumulative number of cases
for the COVID-19 epidemic in China from early data. Mathematical Biosciences and
Engineering, 17(4):3040–3051, 2020.

[58] L. Magri and N. A. K. Doan. First-principles machine learning modelling of COVID-
19. arXiv preprint, 2020.

88

[59] X. He, E. H. Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong,
Y. Guan, X. Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong,
Y. Wu, L. Zhao, F. Zhang, B. J. Cowling, F. Li, and G. M. Leung. Temporal dynamics
in viral shedding and transmissibility of COVID-19. Nature Medicine, 26:672–675,
2020.

[60] Centers for Disease Control and Prevention (CDC). COVID-19 pandemic planning
scenarios. https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html,
Accessed: 2020-12-11.

[61] Q.-X. Long, X.-J. Tang, Q.-L. Shi, Q. Li, H.-J. Deng, J. Yuan, J.L. Hu, W. Xu,
Y. Zhang, and F.J. Lv. Clinical and immunological assessment of asymtomatic sars-
cov-2 infections. Nat. Med., 26:1200–1204, 2020.

[62] D.P. Oran and E.J. Topol. The proportion of sars-cov-2 infections that are asymp-
tomatic. Ann. Intern. Med., 174:655–662, 2021.

[63] E. Dong, H. Du, and L. Gardner. An interactive web-based dashboard to track
COVID-19 in real time. Lancet Infect. Dis., 20:533–534, 2020.

[64] P. Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Mathematical Bio-
sciences, 180:29–48, 2002.

[65] T. K. Torku, A. Q. M. Khaliq, and K. M. Furati. Deep-data-driven neural networks
for covid-19 vaccine efficacy. Epidemiologia, 2(4):564–586, 2021.

[66] F. Chollet. Deep Learning with Python. Manning, 2017.

[67] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein.
Deep neural networks as gaussian processes. arxiv:1711.00165, 2017.

[68] M. Jagan, M. S. deJonge, O. Krylova, and D. J.D. Earn. Fast estimation of
time-varying infectious disease transmission rates. PLoS Computational Biology,
16(9):e1008124, 2020.

[69] D. He, J. Dushoff, T. Day, J. Ma, and D.J.D. Earn. Inferring the causes of the
three waves of the 1918 influenza pandemic in england and wales. Proc. R. Soc.,
280:20131345, 2013.

[70] B. Tepekule, A. Hauser, V.N. Kachalov, S. Andressen, T. Scheier, P.W. Schreiber, and
et al. Assessing the potential impact of transmission during prolonged viral shedding
on the effect of lockdown relaxation on COVID-19. PLoS Computational Biology,
17(1):e1008609, 2021.

[71] D.P. Kingma and J.L. Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980[cs.LG], 2017.

89

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html

[72] K. D. Olumoyin, A. Q. M. Khaliq, and K. M. Furati. Data-driven deep learning algo-
rithms for time-varying infection rates of covid-19 and mitigation measures. arXiv,
2021.

[73] G Gaeta. Social distancing versus early detection and contacts tracing in epidemic
management. Chaos, Solitons, & Fractals, 140:110074, 2020.

[74] World Health Organization (WHO). Archived: WHO Timeline-COVID-19. https:
//www.who.int/news/item/27-04-2020-who-timeline--covid-19, Accessed: 2021-08-
12.

[75] E. Callaway. Making sense of coronavirus mutaions. Nature, 585:174–177, 2020.

[76] Centers for Disease Control and Prevention (CDC). Delta variant: What we
know about the science. https://www.cdc.gov/coronavirus/2019-ncov/variants/
delta-variant.html, Accessed: 2021-08-12.

[77] K.D. Olumoyin, A.Q.M. Khaliq, and K.M. Furati. Data-driven deep-learning algo-
rithm for asymptomatic covid-19 model with varying mitigation measures and trans-
mission rate. Epidemiologia, 2:471–489, 2021.

[78] Centers for Disease Control and Prevention (CDC). Variant proportions. https://covid.
cdc.gov/covid-data-tracker/#variant-proportions, Accessed: 2021-08-20.

[79] K.M. Furati, I.O. Sarumi, and A.Q.M. Khaliq. Fractional model for the spread
of COVID-19 subject to governmental intervention and public perception. Applied
Mathematical Modelling, 95:89–105, 2021.

[80] D.G. Schaeffer and J.W. Cain. Ordinary Differential Equations: Basics and beyond.
Springer, New York, 2016.

[81] M. Eftekhari, A. Yadollahi, A. Shojaeiyan, and M. Ayyari. Development of an artifi-
cial neural network as a tool for predicting the targeted phenolic profile of grapevine
Vitis vinifera foliar wastes. Frontiers in plant science, page 9:837, 2018.

[82] C. Du, J. Wei, S. Wang, and Z. Jia. Genomic selection using principal component
regression. Heredity, 121(1):12–23, 2018.

[83] V.K.R. Chimula and L. Zhang. Time series forecasting of COVID-19 transmission in
canada using lstm networks. Chaos Solitons Fractals, 135:109864, 2020.

[84] M. Hossain, S. Mekhilef, F. Afifi, L.M. Halabi, L. Olatomiwa, M. Seyedmah-
moudian, B. Horan, and A. Stojcevski. Application of the hybrid ANFIS models for
long term wind power density prediction with extrapolation capability. PLoSONE,
13(4):e0193772, 2018.

[85] A.P. Vacilopoulos and R. Bedi. Adaptive neuro-fuzzy inference system in modelling
fatigue life of multidirectional composite laminates. Computational Materials Sci-
ence, 43(4):1086–1093, 2008.

90

https://www.who.int/news/item/27-04-2020-who-timeline--covid-19
https://www.who.int/news/item/27-04-2020-who-timeline--covid-19
https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html
https://covid.cdc.gov/covid-data-tracker/#variant-proportions
https://covid.cdc.gov/covid-data-tracker/#variant-proportions

[86] J-S R. Jang. Anfis: adaptive-network-based fuzzy inference system. IEEE, 23:665–
685, 1993.

[87] A.L. Hodgekin and A.F. Huxley. A quantitative description of membrane current and
its application to conduction and excitation in nerve. J Physiol, 117:500 – 544, 1952.

[88] M. H. Holmes. Introduction to scientific computing and data analysis. Springer
International Publishing, Switzerland, 2016.

[89] N. Geneva and N. Zabaras. Modeling the dynamics of pde systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics,
403:109056, 2020.

[90] P. Ren, C. Rao, Y. Liu, J-X. Wang, and H. Sun. Phycrnet: Physics-
informed convolutional-recurrent network for solving spatiotemporal pdes.
arXiv:2106.14103v1 [cs.LG], 2021.

[91] R FitzHugh. Impulses and physiological states in theoretical models of nerve mem-
brane. Biophysical, 1:445 – 466, 1961.

[92] J Nagumo. An active pulse transmission line simulating nerve axon. Proc. IRE,
50:2061 – 2070, 1962.

[93] N.L. Carothers. Real Analysis. Cambridge University Press, Cambridge, 2000.

[94] S. Safaei, V. Safaei, S. Safaei, Z. Woods, H. R. Arabnia, and J. B. Gutierrez. The
swag algorithm; a mathematical approach that outperforms traditional deep learning.
theory and implementation. Preprint arXiv:1811.11813v1, 2018.

[95] P. Kidger and T. Lyons. Universal approximation with deep narrow networks. Con-
ference on Learning Theory, 2020.

91

Appendices

92

A.1 Weierstrass Approximation Theorem
This is a theorem from Real Analysis for a space of continuous functions-a collection of
functions that have some ’nice properties.’ For instance, if we consider a compact set X ,
we can define C(X) to be a space of continuous functions. With these ’nice properties’
on C(X), the Weierstrass approximation theorem gives us a framework for a polynomial
function that approximates any function in C(X). In our case, we choose X to the the
abstract set [a,b].

Theorem A.1.1. [93] Given f ∈ C[a,b] and ε > 0, there is a polynomial p such that
|| f − p||∞ < ε . Hence, there is a sequence of polynomials (pn) such that pn converges
uniformly to f on [a,b].

In practice, an example of a sequence of polynomials used to approximate f ∈ C(X)
is the Bernstein polynomials. To see how this works, first we state the following lemma
without proof

Lemma A.1.2. There is a linear isometry from C[0,1] onto C[a,b] that maps polynomials
to polynomials.

let f ∈ C[0,1], we can define the sequence (Bn(f))∞
n=1 of Bernstein polynomials for f

by

(Bn(f))(x) =
n

∑
k=0

f (
k
n
) ·
(

n
k

)
xk(1− x)n−k, 0 ≤ x ≤ 1 (1)

The notion of approximating any continuous function by polynomial functions looks
promising for the development of a neural network. However, it was proved in [15] that
polynomials are not universal approximators.

Theorem A.1.3. [15] Let M be the set of functions which are L∞
loc(R) with property that

the closure of the set points of discontinuity of any function in M has zero lebesgue measure.
Let σ ∈ M. Then for a fixed x ∈ Rn,

span{σ{w · x+b} : w ∈ Rn,b ∈ R} (2)

is dense in C(Rn) if and only if σ is not an algebraic polynomial (a.e.)

Although, in [94], we see a framework where polynomials can be used as an activation
function in the construction of a universal approximator. However, one of the reasons
neural networks are widely used today is due in part to the use of non-polynomial nonlinear
functions, namely the sigmoid function, hyperbolic tangent function, and Rectified Linear
Unit.

93

B.2 Universal Approximation Theorems
In [13], we have one of the earliest universal approximation theorem for neural network. It
describes a two layered neural network composed with a sigmoid function.

Theorem B.2.1. [13] Let σ be any continuous discriminatory function. Then finite sums
of the form

G(x) =
N

∑
j=1

α jσ(wT
j x+b j) (3)

are dense in C(Rn). In other words, given any f ∈C(Rn) and ε > 0 there is a sum G(x)
of the above form, for which

|G(x)− f (x)|< ε f or all x ∈ Rn (4)

The neural networks built from [13] and similar theorems did not work well in general.
It was not until the development of deep learning that we begin to see how powerful neural
networks can be especially in the study of differential equation solvers. In recent years, we
have seen many efficient deep learning algorithms and architectures. Next, we consider a
recent universal approximation theorem [95].

Theorem B.2.2 (Universal approximation theorem (nonaffine activation, arbitrary depth)).
[95] Let ϕ : R→ R be any nonaffine continuous function which is continuously differen-

tiable at at least one point, with nonzero derivative at that point. Let K ⊆ Rn be compact.
The space of real vector-valued continuous functions on K is denoted by C(K;Rm). Let N
denote the space of feedforward neural networks with n input neurons, m output neurons,
and an arbitrary number of hidden layers each with n+m+ 2 neurons, such that every
hidden neuron has activation function ϕ and every output neuron has the identity as its
activation function. Then given any ε > 0 and any f ∈C(K;Rm), there exists F ∈ N such
that

|F(x)− f (x)|< ε f or all x ∈ K. (5)

In other words, N is dense in C(K;Rm) with respect to the uniform norm.

94

	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Deep Neural Networks
	1.2 Deep Neural Network Architectures
	1.2.1 Residual Neural Network (ResNet)
	1.2.2 Recurrent Neural Network (RNN)
	1.2.3 Attention-based Network

	1.3 Deep Neural Networks solvers
	1.3.1 Sparse Regression for Nonlinear dynamics
	1.3.2 Physics-informed Neural Network (PINN)

	2 LEARNING AN EPIDEMIOLOGICAL MODEL FROM DATA
	2.1 Asymptomatic-SIR Model
	2.2 Epidemiology-informed Neural Network (EINN) Algorithm
	2.2.1 Data-Driven Simulation for Non-Pharmaceutical Mitigation Measures
	2.2.1.1 Early Detection of Infectives
	2.2.1.2 Social Distancing
	2.2.1.3 Contact Tracing of Infectives

	2.2.2 Data-Driven Simulation for Vaccination Efficacy

	2.3 Error Metrics for Data-Driven Simulation

	3 LEARNING TIME-VARYING TRANSMISSION RATES of EPIDEMIOLOGICAL MODELS
	3.1 Time-Varying Transmission Rate
	3.2 EINN for Time-Varying Transmission rates
	3.2.1 Delayed-mitigation exponential Time-Varying Transmission Rate
	3.2.2 Piecewise time-varying transmission rate

	3.3 Data-Driven Simulation for Time-Varying Transmission Rate
	3.3.1 Data-Driven Simulation for Delayed-mitigation exponential Transmission Rate
	3.3.2 Data-Driven Simulation for Piecewise Transmission Rate

	4 A MULTI-VARIANT MATHEMATICAL MODEL WITH HETEROGENEOUS TRANSMISSION RATES
	4.1 Multi-variant SEIR model
	4.1.1 Variant-based time-varying transmission rates
	4.1.2 Well-posedness of the model
	4.1.3 Basic reproduction number and equilibria stability

	4.2 EINN for SEIR model with time-varying transmission rate
	4.3 Data-driven simulation of COVID-19 variants

	5 FORECASTING WITH RECURRENT NEURAL NETWORK AND AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
	5.1 Adaptive Neuro-Fuzzy Inference System (ANFIS)
	5.2 Performance analysis of error metrics
	5.3 Results

	6 LEARNING BIOCHEMICAL MODELS FROM DATA
	6.1 FitzHugh Nagumo (FHN) model
	6.2 Parameter estimation of FitzHugh Nagumo model
	6.2.1 The Nelder-Mead algorithm
	6.2.2 PINN algorithm for FHN model

	6.3 A discrete physics loss function based Neural Network
	6.3.1 ForwardEulerNet
	6.3.2 PhyAttNet

	6.4 Learning nonlinear biochemical parameters using a modified PINN

	7 CONCLUSION
	 Bibliography
	Appendices
	A.1 Weierstrass Approximation Theorem
	B.2 Universal Approximation Theorems

