giver an $\varepsilon>0$, there exust a $\delta>0$
such that
If $0<|x-a|<\delta$ then $|f(x)-L|<\varepsilon$

Exercises.

\#1. Use gree graph
fine δ such that if $|x-1|<\delta$ then $|f(x)-1|<0.2$

$$
\begin{aligned}
\mid f(x) & -1 \mid<0.2 \\
-0.2 & <f(x)-1<0.2 \\
-0.2+1 & <f(x)-1+1<0.2+1 \\
0.8 & <f(x)<1.2
\end{aligned}
$$

We see from the graph $0.8<f(x)<1.2$ is true of

$$
\begin{aligned}
& 0.7<x<1.1 \\
& \begin{aligned}
1-\delta_{1} & =0.7 \\
\delta_{1} & =1-0.7=0.3 \mathrm{~J}
\end{aligned} \\
& 1+\xi_{2}=1-1.1-1=0.1 \mathrm{~V} \\
& \delta=\min \{0.1,0.3\}=0.1 \\
& \text { or aythen snallen. }
\end{aligned}
$$

th.
If $|x-2|<\delta$, the $|\sqrt{x+5}-3|<0.4$

$$
\left.\left.\begin{array}{rl}
\left|\sqrt{x^{2}+5}-3\right| & <0.4 \\
-0.4 & <\sqrt{x^{2}+5}-3
\end{array}\right)<0.4\right] \text {. } 4+3<\sqrt{x^{2}+5}<0.4+3 .
$$

sone for x when

$$
\begin{gathered}
y=\sqrt{x^{2}+5}=2.6 \\
x^{2}+5=2.6^{2} \\
x^{2}=2.6^{2}-5 \\
x=\sqrt{2.6^{2}-5} \\
x=\sqrt{1.76} \approx 1.3266
\end{gathered}
$$

$4|x-2|<\delta$
then $\left|\sqrt{x^{2}+5}-3\right|<0.2$

$$
\begin{aligned}
2-\delta_{1} & \approx 1.3266 \\
\delta_{1} & \approx 2-1.3266=0.6734
\end{aligned}
$$

solve for

$$
\begin{array}{rlrl}
y=\frac{\sqrt{x^{2}+5}}{}=3.4 & 2+\delta_{2} & \approx 2.5612 \\
x^{2}+5 & =3 . \varphi^{2} & \delta_{2} & =2.5612-2 \\
x^{2}=3.4^{2}-5 & & =0.5612 \\
x & =\sqrt{3 . \varphi^{2}-5} & \delta_{12} & =\min \left\{8_{1}, \delta_{2}\right\} \\
& =\sqrt{6.56} & =\min \{0.5612,0.6734\} \\
=2.5612 &
\end{array}
$$

$\neq 3$. Sud δ sued that
(9) If $|x-1|<\delta$ the $|5 x-5|<\varepsilon$, were

$$
\begin{aligned}
|5 x-5|= & |5(x-1)| \\
= & 5|x-1|<\varepsilon \\
\Rightarrow \quad & |x-1|<\frac{\varepsilon}{\rho} \quad(\varepsilon=0.5) \\
& |x-1|<\frac{0.5}{s} \quad \\
& |x-1|<0.1 \quad \text { chovere } 8=0.1
\end{aligned}
$$

(5) repent (a) fur $\varepsilon=0.05$

$$
\begin{aligned}
&|5 x-5|=5|x-1|<\varepsilon \\
&|x-1|<\frac{\varepsilon}{5} \quad(\varepsilon=0.05) \\
&|x-1|<\frac{0.05}{5} \\
&|x-1|<0.5
\end{aligned}
$$

If $|x-1|<\delta$ the $|\sqrt{x}-5|<\varepsilon \quad(\varepsilon=0.05)$
chare $\delta=0.01$.
\& 9 use $\varepsilon-\&$ defint

$$
\lim _{x \rightarrow 4}\left(\frac{1}{4} x+1\right)=2
$$

giver $\varepsilon>0$ fut 870
If $0 \geq|x-4|<8$ then $\left|\left(\frac{1}{4} x+1\right)-2\right|<\varepsilon$

$$
\begin{aligned}
\left|\frac{1}{\varphi} x+1-2\right| & =\left|\frac{1}{4} x-1\right|<\varepsilon \\
& \Rightarrow \frac{1}{\varphi}|x-\psi|<\varepsilon \\
& \Rightarrow|x-\psi|<\psi \varepsilon
\end{aligned}
$$

chrore $\delta=\psi \varepsilon$
\#S use $\varepsilon-\delta$ defuntin of the lundt

$$
\lim _{x \rightarrow 2}\left(x^{2}-4 x+9\right)=5
$$

groen $\varepsilon>g$
fus $8>0$
p8.
If $0<|x-2|<\delta$ Hen $\left|\left(x^{2}-4 x+9\right)-5\right|<\varepsilon$

$$
\begin{aligned}
\left|x^{2}-4 x+9-5\right| & =\left|x^{2}-4 x+4\right| \\
& =\left|(x-2)^{2}\right|<\varepsilon \\
& =|x-2|^{2}<\varepsilon \\
\Rightarrow & \left\lvert\, \begin{array}{l}
(x-2)^{2} \\
2(x-2)(x-2) \\
x^{2}-2 x-2 x+4
\end{array}\right. \\
\Rightarrow & |x-2|<\sqrt{\varepsilon}
\end{aligned}
$$

Choore $\delta=\sqrt{\varepsilon}$
\$6. H - Hearrside fueh

$$
H(t)= \begin{cases}0 & \text { if } t<0 \\ 1 & \text { if } t \geqslant 0\end{cases}
$$

show that $\lim _{t \rightarrow 0} H(t)$ DNE
If $0<|t-0|<\delta$, then $|H(t)-L|<\varepsilon$
If by contracheher (pick a particular $\varepsilon=\frac{1}{2}$
\checkmark giver $\varepsilon=\frac{1}{2}$ then there exist $\delta>0$ such that

$$
0<|t|<\delta
$$

if $0<1+1<\delta$ the $|H(t)-L|<\frac{1}{2}$

$$
\begin{array}{ll}
0<t<\delta & -\frac{1}{2}<H(t)-L<\frac{1}{2} \\
-\delta<t<0 & L-\frac{1}{2}<H(t)<L+\frac{1}{2}
\end{array}
$$

$$
0<t<8
$$

$$
, H(t)=1, \quad 1<L+\frac{1}{2}
$$

$$
\frac{L>1-\frac{1}{2}}{L>\frac{1}{2}}
$$

$\operatorname{son}-8<t<0$

$$
H(t)=0
$$

$$
\begin{aligned}
& L-\frac{1}{2}<0 \\
& L<\frac{1}{2}
\end{aligned}
$$

Contradictor
Tenefol $\lim _{x \rightarrow 0} H(t)$ aNE
\#7.
guveranis $\delta>0$ such that if $0<|x-4|<8$

$$
\text { then }|(5 x-10)-10|<\varepsilon
$$

$$
\begin{aligned}
&|5 x-10-10|=|5 x-20|=|5(x-4)| \\
&=5|x-4|<\varepsilon \\
& \Rightarrow \quad|x-4|<\frac{\varepsilon}{5}
\end{aligned}
$$

chore $\delta=\varepsilon / \mathrm{s}$
cleek if your chore fir δ is growl $\left(\delta=\frac{\varepsilon}{s}\right)$

$$
\begin{aligned}
& \text { If } 0<|x-\psi|<\delta \\
&|(5 x-10)-10|=|5 x-20| \\
&=5|x-\psi| \\
&<5 \delta=5 \cdot \frac{\varepsilon}{5}=\varepsilon
\end{aligned}
$$

\# 8. Use the graph to find a δ such the if $0<|x-3|<8$ then $|f(x)-2|<0.5$

$$
\begin{aligned}
|f(x)-2| & <0.5 \\
-0.5 & <f(x)-2<0.5 \\
-0.5+2 & <f(x)<0.5+2 \\
1.5 & <f(x)<2.5
\end{aligned}
$$

from the graph

$$
1.5<f(x)<2.5
$$

correspond to

$$
2.6<x<3.8
$$

To chore 8_{1},

$$
3-\delta_{1}=2.6
$$

To chore 8_{1},

$$
\begin{aligned}
3-\delta_{1} & =2.6 \\
\delta_{1} & =3-2.6=0.4
\end{aligned}
$$

To chore $\delta_{2}, \quad 3+\delta_{2}=3.8$

$$
\delta=\min \left\{\delta_{1}, \delta_{2}\right\}=\min \{0.4,0.8\}=0.4
$$

129 Nos
2410.

$$
\lim _{x \rightarrow 2}\left(x^{3}-5 x+9\right)=7
$$

(9) $\varepsilon=0$, fred δ
grue $\varepsilon=0 n$, has δ such thant
if $0<|x-2|<\delta$ the $\left|\left(x^{3}-5 x+9\right)-7\right|<0.2$

$$
\begin{gathered}
\left|x^{3}-5 x+9-7\right|<0.2 \\
-0.2<x^{3}-5 x+2<0.2
\end{gathered}
$$

Sunk x when $y=x^{3}-5 x+2=-0.2$

$$
y=x^{3}-5 x+2 \cdot 2
$$

Using a grepping calculation

$$
\begin{aligned}
& x=1.970 \\
& r-\delta_{1}=1.970
\end{aligned}
$$

chore $\delta_{1}=2-1.970=0.03$
when $\quad y=x^{3}-5 x+9-7=0.2$

$$
\begin{gathered}
y=x^{3}-5 x+2-0.2 \\
y=x^{3}-5 x+1.8 \\
\text { use a graphics calculator } \\
\text { to } x \\
x \approx 2.0279 \\
\delta_{2}+2=2.0279 \\
\delta_{2} z 0.0279 \\
\delta=\min \left\{\delta_{1}, \delta_{2}\right\}=\min \{0.03,0.8279\} \\
=0.0279
\end{gathered}
$$

