Recall the product Rule and Quotient Rule

Product Rule

$$
(f g)^{\prime}=f g^{\prime}+g f^{\prime}
$$

Quotient Rule

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}
$$

Example
differentiate

$$
\begin{aligned}
& (2 x+3)\left(x^{2}+3 x+5\right) \\
= & (2 x+3) \frac{d}{d x}\left(x^{2}+3 x+5\right)+\left(x^{2}+3 x+5\right) \frac{d}{d x}(2 x+3) \\
= & (2 x+3)(2 x+3+0)+\left(x^{2}+3 x+5\right)(2+0) \\
= & (2 x+3)^{2}+2\left(x^{2}+3 x+5\right) \\
= & 4 x^{2}+12 x+9+2 x^{2}+6 x+10 \\
= & 6 x^{2}+18 x+19
\end{aligned}
$$

Rule wee $\left.\begin{array}{l}\text { w is ar } \\ \text { real plunder }\end{array}\right)$

$$
\begin{aligned}
& \frac{d}{d x}(c)=0 \\
& \frac{d}{d x}(s)=0 \\
& \frac{d}{d x}(3)=0 \\
& \frac{d}{d x}\left(\frac{1}{2}\right)=0
\end{aligned}
$$

Differentiate

$$
\begin{aligned}
& f(x)=\frac{2 x+3}{x^{2}+3 x+5} \\
& =\frac{\left(x^{2}+3 x+5\right) \frac{d}{d x}(2 x+3)-(2 x+3) \frac{d}{d x}\left(x^{2}+3 x+5\right)}{\left(x^{2}+3 x+5\right)^{2}}=\frac{9 f^{\prime}-f g^{\prime}}{g^{2}} \\
& =\frac{\left(x^{2}+3 x+5\right)(2+0)-(2 x+3)(2 x+3+0)}{\left(x^{2}+3 x+5\right)^{2}} \\
& =\frac{2 x^{2}+6 x+10-\left(4 x^{2}+12 x+9\right)}{\left(x^{2}+3 x+5\right)^{2}} \\
& =\frac{2 x^{2}+6 x+10-4 x^{2}-12 x-9}{\left(x^{2}+3 x+5\right)^{2}} \\
& =\frac{-2 x^{2}-6 x+1}{\left(x^{2}+3 x+5\right)^{2}}
\end{aligned}
$$

3.3 Derivatives of Trigonometric functions

Brief review of trigonomehne function

$$
f(x)=\sin (x)
$$

$$
\begin{aligned}
& \operatorname{sine}(\theta)=\frac{\text { opp }}{\text { typ }} \\
& \text { Cosine }(\theta)=\frac{\text { adj }}{\text { typ }} \\
& \text { Tangent }(\theta)=\frac{\text { opp }}{a d J} \\
& \text { decrees }
\end{aligned}
$$

radians degrees

$$
\begin{aligned}
& \sin \left(\frac{\pi}{6}\right)=\sin (30)=\frac{1}{2}=0.5 \\
& \sin \left(\frac{\pi}{3}\right)=\sin (60)=\frac{\sqrt{3}}{2}=0.86 \ldots \\
& \sin \left(\frac{\pi}{2}\right)=\sin (90)=\frac{2}{2}=1 \\
& \cos \left(\frac{\pi}{6}\right)=\cos (30)=\frac{\sqrt{3}}{2} \\
& \cos \left(\frac{\pi}{3}\right)=\cos (60)=\frac{1}{2} \\
& \cos \left(\frac{\pi}{2}\right)
\end{aligned}
$$

Review Trigonometric funebm (see Pre-calcuhs)

Exererre

Different rate

$$
\begin{aligned}
& f(x)=\sin (x), f(x+h)=\sin (x+h) \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\cos (x) \sin (h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin (x) \cos (h)-\sin (x)}{h}+\frac{\cos (x) \sin (h)}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\sin (x)\left(\frac{\cos (h)-1}{h}\right)+\cos (x) \frac{\sin (h)}{h}\right] \\
& =\lim \left\lceil\sin (x) \mid(\cos (h)-1 \mid\rceil+\lim _{1}\lceil\cos (x) \sin (h)\rceil\right. \\
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B
\end{aligned}
$$

$\frac{\text { Recess Trigometric }}{\text { Identities }}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left[\sin (x)\left(\frac{(\cos (h)-1}{h}\right)^{\prime}\right]+\lim _{h \rightarrow 0}\left[\cos (x) \frac{\sin (h)}{h}\right] \\
& =\lim _{h \rightarrow \infty} \sin (x) \cdot \lim _{h \rightarrow 0}\left(\frac{\cos (h)-1}{h}\right)+\lim _{h \rightarrow 0} \cos (x) \cdot \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \text { - equahan } \\
& \text { we knom } \\
& \lim _{h \rightarrow 0} \sin (\alpha)=\sin (\alpha) \quad \lim _{h \rightarrow 0}\left(\frac{\cos (h)-1}{h}\right)=0 \quad \text { (move) } \\
& \lim _{h \rightarrow 0} \cos (x)=\cos (x) \quad \lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1 \quad \text { (prose) }
\end{aligned}
$$

Equetu (x) smphy as follows:

$$
\begin{aligned}
f(x) & =\sin (x) \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \sin (x) \cdot \lim _{h \rightarrow 0}\left(\frac{\cos (h)-1}{h}\right)+\lim _{h \rightarrow 0} \cos (x) \cdot \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \\
& =\sin (x) \cdot 0+\cos (x) \cdot 1 \\
& =\cos (x) \\
\frac{d}{d x}(\sin (x)) & =\cos (x)
\end{aligned}
$$

Exercige
use a smilan prosot to show thent

$$
\frac{d}{d x}(\cos (x))=-\sin (x)
$$

Summang

1. $\frac{d}{d x}(\sin (x))=\cos (x) \quad$ (Prse)
2. $\frac{d}{d x}(\cos (x))=-\sin (x)$
3. $\frac{d}{d x}(\tan (x))=\sec ^{2}(x)=\frac{1}{\cos ^{2}(x)}$
4. $\frac{d}{d x}(\csc (x))=\frac{d}{d x}\left(\frac{1}{\sin (x)}\right)=-\csc (x) \cdot \cot (x)$
J. $\frac{d}{d x}(\sec (x))=\frac{d}{d x}\left(\frac{1}{\cos (x)}\right)=\sec (x) \cdot \tan (x)$

$$
6 \cdot \frac{d}{d x}(\cot (x))=\frac{d}{d x}\left(\frac{1}{\tan (x)}\right)=-\csc ^{2}(x)
$$

