2.3 Calculating Limits Using the Limit Laws

Recap from 22 (limit of functor)

Remark

Deformation
Imfrute Limps and Vertical Asymptotes

$$
\lim _{x \rightarrow a} f(x)=\infty \quad \Rightarrow
$$

line

$$
x=A \text { is } a
$$

Vertical asymptote to the curve $f(x)$

Examph

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty
$$

\Rightarrow
Live
$x=0$ is a
vertical asymptote to the (urn

$$
\ln x
$$

Limit Lavs
Suppose that 'c' is s constant ant the limits

$$
\lim _{x \rightarrow a} f(x) \quad \text { and } \lim _{x \rightarrow a} g(x)
$$

exist, them
(1) $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(2) $\lim [f(x)-g(x)\rceil=\lim f(x)-\lim g(x)$

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=L \quad \ll \\
& \begin{array}{cc}
\lim _{x \rightarrow a^{-}} f(x)=L \quad\binom{\text { left-Land }}{\text { lent }} \\
\text { equals }
\end{array} \\
& \lim _{x \rightarrow a^{+}} f(x)=L \quad\left(\text { Rywt }_{\text {Lime }}\right)
\end{aligned}
$$

(2) $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
(3) $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
(4) $\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$
(5) $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)},\left(\begin{array}{l}\text { where } \\ \left.\lim _{x \rightarrow a} g(x) \neq 0\right)\end{array}\right.$

Exercige

(5) $\lim _{x \rightarrow 1}[f(x) \cdot g(x)]$

$$
=\lim _{x \rightarrow 1} f(x) \cdot \lim _{x \rightarrow 1} g(x)
$$

left hard lunt

$$
\lim _{x \rightarrow 1^{-}} f(x) \cdot \lim _{x \rightarrow 1^{-}} g(x)=-4
$$

$$
\begin{aligned}
& \text { vight har limit } \\
& \lim _{x \rightarrow)^{+}} f(x) \cdot \lim _{x \rightarrow \operatorname{l}^{+}} g(x) \\
& \frac{\lim _{x \rightarrow 1}(x)}{2}(-1)=-2 \\
& \text { not equal to } \\
& \lim _{x \rightarrow 1^{+}}[f(x) \cdot g(x)]=-2
\end{aligned}
$$

f 'm (red')
g in 'slue'
(2)

$$
\begin{aligned}
& \lim _{x \rightarrow 2}[f(x)+5 g(x)] \\
= & \lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2}(5 \cdot g(x)) \\
= & \lim _{x \rightarrow 2} f(x)+5 \lim _{x \rightarrow 2} g(x) \\
= & 1+5(-1) \\
= & 1-5=-4
\end{aligned}
$$

$$
\lim _{x \rightarrow 1^{-}}[f(x) \cdot g(x)]=-4
$$

So lim $[f(x) \cdot g(x)]$ iNE

So $\lim _{x \rightarrow 1}[f(x) \cdot g(x)]$ in E
power law

$$
\frac{\left.\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n} \quad(n>0)\right)}{}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\left[\lim _{x \rightarrow a} f(x)\right]} \\
& \lim _{x \rightarrow a}(f(x))^{1 / n}=\left[\lim _{x \rightarrow a} f(x)\right]^{1 / n}
\end{aligned}
$$

$(n>0)$
wher we

$$
\left.\begin{array}{l}
\text { in even, } \\
\lim _{x \rightarrow a} f(x)>0
\end{array}\right)
$$

special lumts
(1) $\lim _{x \rightarrow a} c=c$
(2) $\lim _{x \rightarrow a} x=a$
(3) $\lim _{x \rightarrow a} x^{n}=a^{n} \quad(n>0)$
(4) $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a} \quad(n>0)$
(n in even, (a) 70)
Exeraire. $f(x) \quad g(x)$

$$
\frac{x^{2}+x-6}{x-2}=x+3
$$

In general
If $f(x)=g(x), \quad(x \neq a)$
then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$

Theorem 1

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if }
$$

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

and

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

$$
\begin{aligned}
& \operatorname{simf}_{(\infty, 2)(2, \infty)}^{(x-2)}=x+3 \\
& \text { If } f(x)=g(x) \quad(x \neq 2) \\
& \text { then } \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} g(x) \\
& g(x) \quad\left(\begin{array}{l}
\text { naive }
\end{array}\right) \\
& =\lim _{x \rightarrow 2}(x+3) \\
& =2+3=5 \\
& \lim _{x \rightarrow 3} g(x)=\lim _{x \rightarrow 2}(x+3) \\
& =2+3=5
\end{aligned}
$$

SQUEEZE THEOREM
Herren 2

Tleoren 2

If $f(x) \leq g(x$
when x is near (a)
and lunt if fand g both exurt as x approch' ${ }^{\prime}$ '
then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Therrem 3 (sandwich Therren)
If $f(x) \leq g(x) \leq h(x)$ when x in neer ' a ' ans $\quad \lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)$

Then $\lim _{x \rightarrow a} g(x)=L$
Exercise
use squeeze Heoren

$$
\text { If } 4 x-9 \leqslant f(x) \leq x^{2}-4 x+7 \quad(x \geqslant 0)
$$

fins $\lim _{x \rightarrow 4} f(x)$

$$
\begin{aligned}
\lim _{x \rightarrow 4} 4 x-9 & =4(4)-9=16-9=7 \\
\lim _{x \rightarrow 4} x^{2}-4(x)+7 & =4^{2}-4(4)+7 \\
& =16-16+7=7 \\
\lim _{x \rightarrow \varphi} f(x) & =7
\end{aligned}
$$

exercose

Exercose
use squelze Herrem to Shom thet $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0$
$($ we cannox wre the prodiet las $)$ graph $\sin \frac{1}{x}$

Yor whl durcover thent

$$
\begin{gathered}
-1 \leq \sin \frac{1}{x} \leq 1 \\
-x^{2} \leq x^{2} \sin \frac{1}{x} \leq x^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(-x^{2}\right)=0 \\
& \lim _{x \rightarrow 0} x^{2}=0 \\
& \text { yy squeex }
\end{aligned}
$$

Week 2 Page 8

