Exam 2, october 7 (He whore day, you wal have to fund free 3 his to take the exam)

Sections on Exams 2

$$
2.5,2.6,2.7,2.8,3.1,3.2,3.3
$$

New set of homework tody $(3.1,3.2,3.3)$
Exam 2 prachce today
3 - Differentiation Rules
B.1 Darivatures of polynomials and Exponertear functor
3.2 product and quotient Rules

Recall
f, g are differentiable functions

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
\end{aligned}
$$

$$
C \text { is a constant (example } \underset{c=5, \pi, \ldots)}{ }
$$

1. $\frac{d}{d x}(c)=0$
2. $\frac{d}{d x}(x)=1$
3. $\frac{d}{d x}\left(x^{2}\right)=2 x$
4. $\frac{d}{d x}\left(x^{3}\right)=3 x^{2}$

Power rule

$$
s \cdot \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

6. $\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))$
example

$$
\begin{aligned}
\frac{d}{d x}\left(3 x^{2}\right) & =3 \frac{d}{d x}\left(x^{2}\right) \\
& =3 \cdot\left(2 x^{2-1}\right) \\
& =3 \cdot 2 x \\
& =6 x
\end{aligned}
$$

7. $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))$

$$
s \cdot\left[\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right.
$$

$$
\begin{aligned}
\frac{d}{d x}\left(3 x^{2}+2 x\right) & =\frac{d}{d x}\left(3 x^{2}\right)+\frac{d}{d x}(2 x) \\
& =3 \frac{d}{d x}\left(x^{2}\right)+2 \frac{d}{d x}(x) \\
& =3\left(2 x^{2-1}\right)+2(1) \\
& =6 x+2 \\
\text { 8. } \frac{d}{d x}(f(x)-g(x)) & =\frac{d}{d x}(f(x))-\frac{d}{d x}(g(x))
\end{aligned}
$$

9. $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ (where $\frac{\ell}{\frac{e}{\uparrow}}$ is the Euler nun ser $)$ give motivation on why e 's important
let

$$
\begin{array}{lrl}
f(x) & =b^{x} & \text { (lee bis a real nu e } \\
f(x+h) & =b^{x+h} & \text { example } \\
& f(x)=2^{x}
\end{array}
$$

find $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Recon l

$$
a^{m+n}=a^{m} \cdot a^{n}
$$

$$
=\lim _{h \rightarrow 0} b^{x} \frac{\left(b^{h}-1\right)}{h}
$$

$$
f(x)=b^{x}
$$

(The derivable of an exponential fruchan is mopertional to He exponential fumetom

$$
f^{\prime}(x)=b^{x} f^{\prime}(0)
$$

$$
f^{\prime}(x)=b^{x} f^{\prime}(0)
$$

Sumand
If $f(x)=b^{x} \quad(b$ is a real nuesur $)$
then $f^{\prime}(x)=b^{x} f^{\prime}(0) \quad\left(\begin{array}{l}\left.\text { 在 } \frac{d}{d x}\left(b^{x}\right) \propto b^{x}\right)\end{array}\right.$
take $b=2$ or 3

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}
$$

h	$\frac{2^{h}-1}{h}$	$\frac{3^{h}-1}{h}$	$\frac{e^{h}-1}{h}$
0.1	0.71773	1.16123	
0.01	0.69556	1.10467	
0.001	0.69739	1.09922	
0.0001	0.69317	1.09867	\searrow

If $\quad b=2 \quad f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{2^{h}-1}{h} \approx 0.693$

$$
b=3 \quad f^{\prime}(0)=\lim _{n \rightarrow 0} \frac{3^{n}-1}{\sim} \approx 1.099
$$

(1)

If $\quad f(x)=2^{x}$
then $f^{\prime}(x) \approx 0.6732^{x}$

Definition of e

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

(2) If $f(x)=3^{x}$
then $f^{\prime}(x) \approx 1.0993^{x}$
(3) If $f(x)=e^{x}$
then $f^{\prime}(x)=1 \cdot e^{x}=e^{x}$ $\left(f^{\prime}(0)=1\right)$

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

$$
\left(e^{\prime}=2.718 \ldots .\right.
$$

(Irationel mumser)
Exercise.
If $f(x)=e^{x}-x$ (a) fud $f^{\prime}(x)$ (b) fund $f^{\prime \prime}(x)$
(a)

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{x}-x\right)=\frac{d}{d x}\left(e^{x}\right)-\frac{d}{d x}(x) \\
&=e^{x}-1 \\
& f^{\prime}(x)=e^{x}-1
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \frac{d}{d x}\left(f^{\prime}(x)\right)=\frac{d}{d x}\left(e^{x}-1\right)=\frac{d}{d x}\left(e^{x}\right)-\frac{d}{d x}(1) \\
&=e^{x}-0=e^{x} \\
& f^{\prime \prime}(x)=e^{x}
\end{aligned}
$$

32 product and Quotient Rule
Product Rule
If f, g are both ifferentiable

$$
\begin{array}{ll}
\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)] & \text { (Leibni]) } \\
(f g)^{\prime}=f g^{\prime}+g f^{\prime} & \text { (Nenbou) }
\end{array}
$$

example
(1) $f(x)=x^{2}(x+3)$

$$
\begin{aligned}
\frac{d}{d x}[f(x)]=\frac{d}{d x}\left[x^{2}(x+3)\right] & =x^{2} \frac{d}{d x}(x+3)+(x+3) \frac{d}{d x}\left(x^{2}\right) \\
& =x^{2}(1+0)+(x+3)(2 x) \\
& =x^{2}+2 x(x+3)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { 2) } \begin{aligned}
f(x) & =x e^{x}, \text { fuss } f^{\prime}(x) \\
\frac{d}{d x}\left(x e^{x}\right) & =x \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}(x) \\
& =x e^{x}+e^{x} \cdot 1 \\
& =e^{x}(x+1)
\end{aligned}
\end{aligned}
$$

Exercise
If $f(x)=x e^{x}$, show that $f^{\prime \prime}(x)=e^{x}(x+2)$

$$
f^{\prime \prime \prime}(x)=e^{x}(x+3)
$$

(nthervatue) $\quad f^{(n)}(x)=e^{x}(x+n)$
(Inductmorf)

