2.7 Derivatives and Rates of change

Definition
The Derivative of a function F at a point a is denoted $f^{\prime}(a)$
(1) $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(ii) $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

Exercise
use definition (i) to find the derivative of

$$
f(x)=x^{2}-8 x+9
$$

(a) at 2

$$
\begin{aligned}
& f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& f(2)=\tau^{2}-8(\tau)+9 \\
& f(2+h)=(2+h)^{2}-8(2+h)+9 \\
& =\lim _{h \rightarrow 0} \frac{(2+h)^{2}-8(2+h)+9-\left(\tau^{2}-8(2)+9\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4+4 h+h^{2}-16-8 h+\not \subset-4+16-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{-4 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{y(-4+h)}{y} \\
& =\lim _{h \rightarrow 0}-4+h \\
& =-4
\end{aligned}
$$

(b) $f^{\prime}(a)$ Exeruse

In summeny, 2.7:
Remenb
The targent live to the curve $y=f(x)$ at $(a, f(a))$ is Live passing through $(a, f(a))$ whore slope is f'(a) whel
is the derivaluse of f at ' a '

Exereose
use $(\varepsilon-N)$ defintion to prove

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

Soluhane
given $\varepsilon>0$, find N such thet if $x>x$ Hem $|f(x)-L|<\varepsilon$

$$
\begin{aligned}
&\left|\frac{1}{x}-0\right|<\varepsilon \\
&\left|\frac{1}{x}\right|<\varepsilon \\
& \frac{1}{x}<\varepsilon \\
& x>\frac{1}{\varepsilon} \\
& \quad \text { choore } r=\frac{1}{\varepsilon}
\end{aligned}
$$

Rates of change

$$
\cdots L-\sum_{\text {mastowe }} Q\left(x_{2}, f\left(x_{2}\right)\right.
$$

$$
\begin{aligned}
& \text { Instateneers } \\
& \begin{array}{l}
\text { rate of } \\
\text { cheger }
\end{array}
\end{aligned} \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

2.8 The derivapue as a function

Previourly (derisabive of atichin powt a)

$$
\begin{aligned}
& \text { Previonsy (derisahve a at a Pont a) } \\
& \text { pervalue } \\
& \lim _{\text {a }} \text { a point } f^{\prime}(a)=\lim _{h \rightarrow 20} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\end{aligned}
$$

pervalue
How suppore we let a vary
(replere a wil x)

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

guver any x in the Domein of f and as long as thin lunt exist
we sey ${\underset{\tau}{f}}_{f^{\prime}}$ is the denvahive or $\frac{f}{\uparrow}$
funcher
froser
Reverucn
at eveng porst on the grengh of f we con dran II a tayent liel to construet the graph of f^{\prime}

Exenire
If $f(x)=x^{3}-x$, fine $f^{\prime}(x)$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
f(x+h)=(x+h)^{3}-(x+h)
$$

$$
f(x)=x^{3}-x
$$

$$
\begin{aligned}
& h \rightarrow 0 \quad h \quad f(x)=x^{3}-x \\
= & \lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-(x+h)\right]-\left(x^{3}-x\right)}{h} \\
= & \lim _{h \rightarrow 0} \frac{\left[x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x x-h-x^{3}+x\right]}{h} \\
= & \lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-h}{h} \\
= & \lim _{h \rightarrow 0} \frac{k\left(3 x^{2}+3 x h+h^{2}-1\right)}{4} \\
= & \lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}-1 \\
& =3 x^{2}+3 x(6)+\sigma^{2}-1 \\
f^{\prime}(x) & =3 x^{2}-1
\end{aligned}
$$

$$
f(x)=x^{3}-x, \quad f^{\prime}(x)=3 x^{2}-1
$$

Exerting
(1) lng $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Show that if $f(x)=\sqrt{x}$, then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$

2 shin that if $f(x)=\frac{1-x}{2+x}$, then $f^{\prime}(x)=\frac{-3}{(2+x)^{2}}$

Defimitm
(27) A function is "difterentrable" at 'a' if $f^{\prime}(a)$ exurt.
(20) It is chfferentiable on an open interval (a, b) or (a, ∞), $(-\infty, a),(-\infty, \infty)$ if it is chfferentiable at eveny pount in the open interval.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{2}
$$

Contimus
differenharke

Confectures (a statement we do not knum to be true)
confecke I If f 'is contimions at a point 'a'
ten f is diffenharle of pont ' a '

Congeche 2 If f is ditferentiansle at a pount ' a ' then t is confinuom of a pout la'

Exercise
Where is the fumetion

$$
\begin{aligned}
& f(x)=|x| \quad \text { differentiable? } \\
& f(f)=|x|=\left\{\begin{array}{ll}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array} \int_{x<0} \quad x>0\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } x>0, \quad|x|=x \\
& f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

$x+h>0$ (for an h small enough)

$$
f(x+h)=|x+h|=x+h
$$

$$
f(x)=|x|=x
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0} 1=1
\end{aligned}
$$

If $x<0, \quad|x|=-x$

$$
|x+h|=-(x+h) \quad \stackrel{\sim}{\sim} \operatorname{cim}_{\text {small }}{ }^{h} \operatorname{enosf}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0}-\frac{(x+h)-(-x)}{h} \\
& =\lim _{h \rightarrow 0}-\frac{\not x-h+x}{h} \\
& =\lim _{h \rightarrow 0}-\frac{h}{h} \\
& =\lim _{h \rightarrow 0}-1 \\
& =-1
\end{aligned}
$$

for $x=0$,

$$
f(0)=|0|=0
$$

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \quad f(0+h)=|0+h|=|h| \\
& =\lim _{h \rightarrow 0} \frac{|h|-0}{h} \\
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h} & \left.=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} \right\rvert\,=1 \\
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h} & =\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1
\end{aligned}
$$

$f^{\prime}(0)$ does nor exist

$$
f(x)=|x|=) x \quad \text { if } x \geq 0 \quad f^{\prime}(x)=\{\quad \text { i } \quad \text { if } x>0
$$

$$
f(x)=|x|=\left\{\begin{array}{ll}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array} \quad, f^{\prime}(x)= \begin{cases}1 & \text { if } x>0 \\
-1 & \text { if } x<0\end{cases}\right.
$$

not chifferentrable at 0
$f(x)=|x|$ is nst contimins yearse
at ' 0 ' $\lim |x|=1$
Teorem $A \quad \lim _{x \rightarrow 0} \lim _{x \rightarrow 0}|x|=-1$
If f 's differentrable at a pout as
then f is contimues of poit as ?

Recarl
Logic If p them $q \quad l, r$ are statiments contraposthen If $\sim q$ then $\sim p \quad(\sim q \Rightarrow \sim p)$

Take the Contraposthon of Tleonem A
If f is not continusus at a point ia' $\sim q$ then f is not differensia ble at a promt ' a ' $\sim p$
$f(x)=|x|$ is not continuous at a pout ' ${ }^{\prime}$ ' and so $f(x)=|x|$ is not differentiable at 'a)

Q How can a funchen farl to be differentiable?

Answer 1 if the finchou has a Kink or Corner, then f hos no sagest line at the kink or corner so of is not differentiable there.

Answer 2 If the is a point of descontinutin, the the function is not differentiable there

Answer If there is a vertical tagert line, them He function is nor differentiable at thant point

Higher derivahues

| $f^{\prime} \ldots f^{\prime \prime}$ | $f^{(n)}($ dervales $)$ |
| :--- | :--- | :--- |

as loug as the lent's exust
De above notater for the dervistuve (Higler dematwes) are due to Sir Isace Nensoi (Eughrh mathematioion)
Insefendenth bosh developed calculs
Gottfroed Leibm] (Germen mestlenahicon)

$$
f^{\prime} \Rightarrow \frac{d f}{d x} \Rightarrow D f \Rightarrow D_{x} f
$$

Exerise
Real

$$
r(\cdots)=x^{3}-x
$$

$$
f^{\prime}(x)=3 x^{2}-1
$$

trencir
Reall
If $f(x)=x^{3}-x$

$$
f^{\prime}(x)=3 x^{2}-1
$$

find

$$
\begin{aligned}
f^{\prime \prime}(x) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \quad f^{\prime}(x+h)=3(x+h)^{2}-1 \\
& =\lim _{h \rightarrow 0}\left(f^{\prime}(x)\right) \frac{\left[3(x+h)^{2}-1\right]-\left(3 x^{2}-1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3\left(x^{2}+2 x h+h^{2}\right)-1-3 x^{2}+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{\prime}+6 x h+3 h^{2}=x-3 x^{2} x 1}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(6 x+3 h)}{h} \\
& =\lim _{h \rightarrow 0} 6 x+子 h \\
& =6 x
\end{aligned} \quad \begin{array}{ll}
& \\
f^{\prime \prime}(x)=x^{3}-x \\
& f^{\prime}(x)=3 x^{2}-1
\end{array}
$$

Exercise

$$
f(x)=x^{2}
$$

(1) fund $f^{\prime}(s)$
(3) $f^{\prime}\left(\frac{1}{2}\right)$

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(0+h)^{2}-0^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{h}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\ddot{h}}{\psi} \\
& =\lim _{h \rightarrow 0} h \\
& =0
\end{aligned}
$$

find (a) $f^{\prime}(x)$ wher $f(x)=x^{2}$
(5) $f^{\prime \prime}(x)$
(a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{x}+2 x h+h^{2}-x^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 20} 2 x+h \\
& =2 x
\end{aligned}
$$

$$
f(x)=x^{2}
$$

$$
f^{\prime}(x)=2 x
$$

$$
f(x+h)=(x+h)^{2}
$$

$$
f^{\prime}(x+h)=2(x+h)
$$

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}
$$

