
for
あw
Revien $\varepsilon-\delta$, (Sometimes there is an N)

11

$$
\lim _{x \rightarrow a} f(x)=L
$$

$$
\varepsilon-\delta
$$

given $\varepsilon>0$ there exurt a $\delta>0$ sueh thent If $0<|x-a|<\delta$ then $|f(x)-L|<\varepsilon$
(2) $\lim _{x \rightarrow \infty} f(x)=L$

$$
\varepsilon-N
$$

given $\varepsilon>0$ there exurs an M such thent If $x>N$ then $|f(x)-L|<\varepsilon$
(3) $\lim _{x \rightarrow-\infty} f(x)=L$
$\varepsilon-N$
gwen $\varepsilon>0$ tere exirs an M suel thet
If $\quad x<H$ then $|f(x)-L|<\varepsilon$
goeter for \geqslant

If we make \& smorler you need a Briger N
cketch for (3)

If we meabe \& smalle you need a smerler N
use $\varepsilon-N$ (definshen)
Show $\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}=\frac{3}{5}=0.6 \quad$ gwen $\varepsilon=0.1$
Bt
giver $\varepsilon>0$ |fund $M \mid$ sneh thent
If $x>x$ then $\left|\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}-0.6\right|<0.1$

$$
\begin{aligned}
-0.1 & <\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}-0.6<0.1 \\
-0.1+0.6 & <\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}<0.1+0.6 \\
0.5 & <\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}<0.7
\end{aligned}
$$

fins x sweh that the funekm lies behween 0.5 and 0.7
using a greping calculasor (desmos)

$$
\mid N=1
$$

Exerine
find an H wem $\varepsilon=0.01$
(gue me feedbeet)
2.7 Derivalites and Rates of chage

Definm
The tangent line to the cunse $y=f(x)$ at the pount $p(a, f(a))$ is the live throngh p with slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(h)}{h}
$$

$$
h=x-a
$$

$$
a+h=x
$$

Exercise
Fint the equathon of the targent line to the uyperbora $f(x)=y=\frac{3}{x}$ at the pows $(3,1)$

$$
a=3
$$

Soluhn

$$
f(a)=f(3)=\frac{3}{3}=1
$$

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad f(a+h)=f(3+h)=\frac{3}{3+h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3}{3+h}-1}{h}
\end{aligned}
$$

$$
\begin{aligned}
= & \lim _{h \rightarrow 0} \frac{\frac{3-(3+h)}{3+h}}{h} \\
= & \lim _{h \rightarrow 0} \frac{3-(3+h)}{h(3+h)} \\
= & \lim _{h \rightarrow 0} \frac{\gamma-\not-h}{h(3+h)} \\
= & \lim _{h \rightarrow 0} \frac{-h}{h(3+h)} \\
m & =\lim _{h \rightarrow 0} \frac{-1}{3+h}=-\frac{1}{3}
\end{aligned}
$$

frue the equation of the tengent line
Porot-slope form $y-y_{1}=m\left(x-x_{1}\right)$
green $(x, y)=,(3,1)$

$$
\begin{aligned}
& m=-\frac{1}{3} \\
& y-1=-\frac{1}{3}(x-3) \\
& 3 y-3=-x+3 \\
& 3 y+x-6=0
\end{aligned}
$$

Definitm
Derivature of a funetum f at a powt 's'
(1) $\quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(2) $\quad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

Exercise
..n ... 1 bo slaw Hewt
wse defrintin 2 abrue to show thent
the denvatrue $f(x)=\frac{1}{\sqrt{x}}$ at a pont 'a'
is $\quad f^{\prime}(a)=-\frac{1}{2 a^{3 / 2}}$

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{x}} \\
& f(a)=\frac{1}{\sqrt{a}} \\
& \frac{1}{\sqrt{x}}-\frac{1}{\sqrt{a}} \\
& \frac{\sqrt{a}-\sqrt{x}}{\sqrt{x} \sqrt{a}}
\end{aligned}
$$

SSluhum

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{a}}}{x-a} \\
& f(a)=\frac{1}{\sqrt{a}} \\
& \frac{1}{\sqrt{x}}-\frac{1}{\sqrt{a}} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{a}-\sqrt{x}}{\sqrt{x} \sqrt{a}(x-a)} \\
& \frac{\sqrt{a}-\sqrt{x}}{\sqrt{x} \sqrt{a}} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{a}-\sqrt{x}}{\sqrt{a x}(x-a)} \cdot \frac{\sqrt{a}+\sqrt{x}}{\sqrt{a}+\sqrt{x}} \\
& =\lim _{x \rightarrow a} \frac{a-x}{\sqrt{a x}(x-a)(\sqrt{a}+\sqrt{x})} \\
& =\lim _{x \rightarrow 2 a} \frac{-(x<a)}{\sqrt{a x}(x / a)(\sqrt{a}+\sqrt{x})} \\
& =\lim _{x \rightarrow a} \frac{-1}{\sqrt{a x}(\sqrt{a}+\sqrt{x})} \\
& =\frac{-1}{\sqrt{a \cdot a}(\sqrt{a}+\sqrt{a})} \\
& =\frac{-1}{a \cdot 2 \sqrt{a}} \\
& =\frac{-1}{2 a^{1} \cdot a^{1 / 2}} \\
& =\frac{-1}{2 a^{1+1 / 2}} \\
& f^{\prime}(a)=\frac{-1}{2 a^{3 / 2}}
\end{aligned}
$$

