Note we defed Review Continuity confirming at a point] A function f is continuous at a point #a" [If $\begin{array}{l} (\lim_{x \to 9} f(x) = f(a) \end{array}$ /f&) fla) () for is defined (iii) lim for eart $\begin{array}{c} (iii) \quad \text{lim} f(x) = f(a) \\ x \rightarrow a \end{array}$ >94 Definition A function of is confirming from the right of at a number a $\lim_{\alpha\to a^+} f(\alpha) = f(\alpha)$ Definition 2 Definition 2 A function of is Continuous from the beft if at a number & $\lim_{X \to a} f(x) = f(a)$ Definition 3 A function of is continuous on an interval if it is continuous at every point in the interval. Polynomial (continuos everywhere IP = (-00,00)) habiored (continuous on their domain (a subset of A) properties of Continuers functions 1. let fig be confinuous at a point (a) and let I be a consent

then the following functions are also continuous at 'g' O ftg d cf $\bigcirc f (g(a) \neq \circ)$ B f-g 0 fg prove that ftg is continuous at 's', when f, g are both confirming at a We know $\lim_{x \to a} f(x) = f(a)$ (suce f is continuous) at a (sme g is continuous at a $\lim_{x \to a} g(x) = g(a)$ $\lim_{x \to g} (f+g)(x) = \lim_{x \to g} f(x) + g(x)$ (& combination of functions) $\chi \rightarrow 9$ (Wing Umit laws) $= \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ = f(a) + g(a) = (f + fg)(a)This shows ftg is continuous at a Polynomial functions $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x + q_n$ exempter for) 2 5x² + 3x + 2 They are continuous everywhere (IR 2 (-00,00))

Rational functions $f(x) = \frac{P(x)}{Q(x)}$, where EP, Q are polynomial functions $(O(x) \neq 0)$ Continuous on Hein domann y axis $\int_{0}^{\infty} \sum_{x \text{ axis}}^{\text{Donem}} (-\infty, 0) \cup (0, \infty)$ Example (tox) = 1/x Exercise show that polynomial functions are continuous everywhen $f(x) = a_n x^n + a_{n-1} x^n + \dots + a_n x + a_n$ $\lim_{x \to \infty} f(x) = \lim_{x \to \alpha} (a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x + a_n)$ $= \lim_{x \to a} a_n x^n + \lim_{x \to a} a_{n-1} x^{n-1} + \cdots + \lim_{x \to a} a_n x + \lim_{x \to a}$ $= \underbrace{\operatorname{End}}_{x \to a} x^{n} + \underbrace{\operatorname{End}}_{x \to a} \underbrace{\operatorname{End}}_{x \to a} + \underbrace{\operatorname{End}}_{x \to a} x^{n-1} + - + \underbrace{\operatorname{End}}_{x \to a} x^{n} + \underbrace{\operatorname{End}}_{x \to a} x^{n-1} + \underbrace{\operatorname{End}}_{x \to a$ $= a_n a^n + a_{n-1} a^{n-1} + - - + a_n a^n + a_n$ in A repeat this stells for any point is in A we can Conclude polynamical functions are continuous on A we can Frenine for Rassonel functions Do Similar P(x), P, Q are polynomial functions FUX) 2 Report functions are continuous on Conclusion Heir doment.

lleoren $\left(\begin{array}{c} \lim_{x \to b} f(x) = f(b) \\ x \to b \end{array}\right)$ lf f is continuous at b and $\lim_{x \to a} g(x) = b$ (necessary) then $\lim_{x \to a} f(g(x)) = f(b)$ that b, $\lim_{X \to S} f(g(x)) = f(\lim_{X \to S} g(x)) = f(b)$ (Passing the limit) Heoren $f \circ g$ If g is continuous at a and f is (onknows at g(a) then fog given by fog(x) = f(g(x)) is continuous it's' Interprediate Value Theorem f is continuous on an interval [9,5] (closed interval) bet N be a number in [Fan, f(b)] $(f(a) \neq f(b))$ The eart a point (in (a,b) such that f(c) = N F f(6) $f(\alpha)$

	,	1	1		
fai					
			1		
	2	C	6		