Exercise on 2,4
use the $\frac{\varepsilon-\delta \text { definition to strow }}{\text { q-4n }}$

$$
\lim _{x \rightarrow-\frac{3}{2}} \frac{9-4 x^{2}}{3+2 x}=6
$$

Solution
given $\varepsilon>0$, find $\delta>0$ such that

$$
\begin{aligned}
&\left|\frac{9-4 x^{2}}{3+2 x}-\frac{6}{1}\right|=\left|\frac{9-4 x^{2}-6(3+2 x)}{3+2 x}\right|=\left|\frac{9-4 x^{2}-18-12 x}{3+2 x}\right| \\
&=\left|\frac{-4 x^{2}-12 x-9}{3+2 x}\right| \\
&=\left|\frac{-(3+2 x)^{x}}{(3+x)}\right| \\
&=|-(3+2 x)| \\
&=\left|-2\left(\frac{3}{2}+x\right)\right| \\
& \left.=|-2| \frac{3}{2}+x \right\rvert\, \\
&=2\left|\frac{3}{2}+x\right|<\varepsilon \quad\left|\frac{3}{2}+x\right|<\frac{\varepsilon}{2} \quad \text { choose } \\
& \delta=\frac{8}{8}
\end{aligned}
$$

In Calculus
2.5 Continuity
\rightarrow Differentiation (tapent $\begin{gathered}\text { proven) }\end{gathered}$
\rightarrow Integration (Area Problem)
$\left[\begin{array}{l}\text { limit of a function } f \text { as } x \text { approach } \\ \text { a point (a) }\end{array}\right.$

$$
\lim _{x \rightarrow a} f(x)=L
$$

7 previouth
The are 5 major ' C ' unds \checkmark continuity
$\frac{\checkmark \text { convergence }}{\text { Connected }} \downarrow$ beyond

$$
\begin{array}{lll}
\lim _{x \rightarrow a} x(x)=L & \text { Connectsd } & \text { Compaetness beyond } \\
& \text { Previousty } & \text { complete }
\end{array}
$$

motivate
Find, look

$$
\lim _{x \rightarrow a} f(x) \neq f(a)
$$

(Exant) lyt it in wr the sent as the f at a

$$
\text { Remensur } \frac{f(x)=\frac{\sin x}{x} \text { (im } \frac{\sin x}{x}=1}{\lim _{x \rightarrow 0}} \rightarrow \text { (} f(0) \text { is is } n x /
$$

$$
\lim _{x \rightarrow 0} f(x) \neq f(x)
$$

In Jodey's clans lry contimity, we wont to duscuss whe

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Definitres
A functron f is (ontinuons at a pront 'a) if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

The deeforaerd definition holds if
(i) $f(a)$ is defined
(ii) $\lim _{x \rightarrow a} f(x)$ must exors
(iii) $\lim _{x \rightarrow a} f(x)=f(a)$

$$
f(x) \rightarrow f(a)
$$

a) $x \rightarrow a$ continuors at (a)'

Remenk
we say f is discontinuons at a (f has a chscontionst at a)
If f is not continuous at a

Exanple of a functur chscontinuos at a pount
Hearisnde furehm

$$
H(t)=\left\{\begin{array}{lll}
0 & t<0 \\
1 & t \geqslant 0
\end{array} \quad \rightarrow \quad t\right.
$$

duscontinum at $t=0$

$$
\lim _{t^{\rightarrow} \rightarrow 0} H(t) \quad \text { DNE }
$$

(For consoms at is
(i) $f(a)$ defed
(ii) $\lim _{x \rightarrow 20} f(x)$ exus
(um) $\lim _{x \rightarrow-\infty} f(x)=f(a)$
Sone types of disconsinuities

1. Removalbe chscontimity counder the ffy exarples
(a) $f(x)=\frac{x^{2}-x-2}{x-2}=\frac{(x-2)(x+1)}{x-2}$
$f(2)$ is $n t$ defineal descontimus at $x=2$

(b)

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2 \\
1 & \text { if } x=2
\end{array}\right.
$$

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+1) \\
& =3
\end{aligned}
$$

(i) $f(2)$ defred
(ii) $\lim _{x \rightarrow 2} f(x)$ exurs
(iin) $\lim _{x \rightarrow 2} f(x) \neq f(v)$

Infincte discontinuity

$$
11 \quad 11 x+0
$$

(i) $f(0)$ defreed

Infruta ansconoivunts

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{x^{2}} & \text { if } x \neq 0 \\
1 & \text { if } x=0
\end{array}\right.
$$

(i) $f(0)$ degned
(ii)

$$
\lim _{x \rightarrow 0} f(x)=\infty
$$ (DNE)

Jump discontinuity (see more latir).

Example of chscontinuty for different reasons

The are 3 chsconsinners pomb on this graph
U) f is duxoufinum at $x=1$ ($f(1)$ is not defined)

(iii) f in disconsinuory at $x=5$

$$
\left(\begin{array}{l}
\text { although } f(5) \text { is defived } \\
\text { athey } \lim _{x \rightarrow 5} f(x) \\
\text { Exurs }
\end{array}\right.
$$

$$
\text { But } \lim _{x \rightarrow 5} f(x) \neq f(5)
$$

gh monsen
Theorems on confinuity
4 Intermediate valuons on $[a, b]$
curne f 's continons $f(a) \neq f(b)$

$$
f(a)
$$

2) Here ear a prons C im (a, b)

