2.1 The Tangent and Velocity Problems

The Tangent Problem

(a)

(b)
problem statement
we want to find the equation of the tangent L at the point p

It is a dificut problem to find the equation of a line with one point

Example 1

Find an equation of the tangent line to the parabola $y=x^{2}$ at the point $P(1,1)$.
Q we want the equation of the tangent l at the pout p

The Velocity Problem
Fwd the instateneors velocity of an objet at a spelafle time (Aspiring theA yum know the poschen at even ster tine

Example 3

Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

Gale.

$$
S(t)=4.9 t^{2}
$$

Time interval Average velocity $(\mathrm{m} / \mathrm{s})$ $5 \leqslant t \leqslant 5.1$ 49.49 $5 \leqslant t \leqslant 5.05$ 49.245 $5 \leqslant t \leqslant 5.01$ $5 \leqslant t \leqslant 5.001$
$5 \leqslant t-(5+h)$ $h \rightarrow 0$

Distal

Class Exercise on 2.1

1. Tangent problem

The point $P(2,-1)$ lies on the curve $y=\frac{1}{1-x}$
© If Q is the point $Q\left(x, \frac{1}{1-x}\right)$
Find the slope of the secant line PQ for the following valves of x

(b) guess the slope of the tangent line

$$
m=\lim _{Q \rightarrow p} m_{\rho_{Q}}=\lim _{x \rightarrow 2} \frac{\frac{1}{1-x}+1}{x-2}=1
$$

(6) Equation of the turgent line $\begin{aligned} & x_{1}, y_{1} \\ & p(r,-1)\end{aligned}$ use point slope formae

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-1)=1(x-2) \\
y+1=x-2 \\
y=x-2-1 \\
y=x-3
\end{gathered}
$$

equation of the tangent blue at $\rho(2,-1)$ curve

$$
y=\frac{1}{1-x}
$$

Velour problem
Exercise
If a rock is thrown upward on mans with a Jeloerty of $10 \mathrm{~m} / \mathrm{s}$, uts height
yet $10 t-1.86 t^{2}$
(a) fine the average velour over the giver tine internal

$$
\begin{aligned}
& 1 \leq t \leq 2 \\
& 1 \leq x \leq 1+11 \\
& m_{P Q}^{\text {但 }}=\frac{y(2)-y(1)}{2-1}=\frac{12.56-8.14}{1}=4.42 \\
& y(2)=10(2)-1.86(2)^{2}=12.56 \\
& y(1)=10(1)-1.86(1)^{2}=8.14 \\
& \begin{array}{l}
y(1.5)=10(1.5)-1.86(1.5)^{2}=10.815 \quad \frac{y(1.5)-y(1)}{1.5-1} \\
y(1)=8.14
\end{array} \\
& 1 \leq x \leq 1+0.5 \\
& =\frac{10.815-8.14}{1.5-1}=\frac{2.675}{0.5} \\
& =5.35 \\
& 1 \leq x \leq 1.1 \\
& y(1.1)=10(1.1)-1.86(1.1)^{2}=8.7494 \\
& y(1)=8.14 \quad \frac{y(1.1)-y(1)}{1.1-1}=\frac{8.7494-8.14}{0.1} \\
& =6.094 \\
& y(1+0.01)=\searrow \\
& 1 \leq x \leq 1.01 \\
& y(1.01)=10(1.01)-1.86(1.01)^{2}=8.202614 \\
& y(1)=8.14 \quad 1+0.01
\end{aligned}
$$

(b) What is the instatenems velocity at $t=1$

$$
m=\lim _{h \rightarrow 0} \frac{y(1+h)-y(1)}{(1+h)-1}=
$$

2.2 Limit of a function

$$
f(x)=\frac{x-1}{x^{2}-1} \quad \lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}
$$

$(x<1)$		$(x>1)$	
x	$f(x)$	x	$f(x)$
0.9		1.5	
0.9		1.1	
0.99		1.01	
0.999		1.001	

Show

$$
\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}=0.5
$$

graph

$$
f(x)=\frac{x-1}{x^{2}-1}
$$

$$
\left(\begin{array}{c}
\text { what is } f(x) \\
\text { for } x \text { values } \\
\text { near } 1
\end{array}\right)
$$

Confirm (usury similar approceh described above) numerical $\$$ graphical

$$
\begin{aligned}
& 1 \leq x \leq 1.01 \\
& 15+21+0.01 \quad y(1)=8.14 \\
& 1 L_{-} x_{L}+0.01 \quad y(1)=8.14 \\
& \frac{y(1.01)-y(1)}{1.01-1}=\frac{8.202614-8.14}{0.01} \\
& =6.26 \\
& 1 \leq t \leq 1.001,
\end{aligned}
$$

Numericar \$ graphicior

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+9}-3}{x^{2}}=\frac{1}{6}
$$

