2.1 The Tangent and Velocity Problems

The Tangent Problem

(a)

(b)
problem statement
we want to find the equation of the tangent L at the point p

It is a dificut problem to find the equation of a line with one point

Example 1

Find an equation of the tangent line to the parabola $y=x^{2}$ at the point $P(1,1)$.
Q we want the equation of the tangent l at the pout p

$$
y=x^{2}
$$

The Velocity Problem
Fwd the instateneoss velocity of an objet at a speerfe time
(Ashing that yon know the poschen at every olen tine

Example 3

Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

$$
r-116 n
$$

Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

Galubo.

Time interval	Average velocity $(\mathrm{m} / \mathrm{s})$
$5 \leqslant t \leqslant 5.1$	49.49
$5 \leqslant t \leqslant 5.05$	49.245
$5 \leqslant t \leqslant 5.01$	
$5 \leqslant t \leqslant 5.001$	49.049

Diss ac

$$
\operatorname{sic}_{h \rightarrow 0} \quad 49 \quad \text { Intefinerts }=\lim _{h \rightarrow 0} \frac{4.9(s+h)^{2}-4.9(5)^{2}}{(s+h)-5}
$$

 $\frac{22}{\lambda} \rightarrow$ irrahomes
 (non-temineeng deener
non repeats patterns) (3.14.

