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Abstract

Mutating variants of COVID-19 have been reported across many US states since 2021. In the fight against COVID-

19, it has become imperative to study the heterogeneity in the time-varying transmission rates for each variant in

the presence of pharmaceutical and non-pharmaceutical mitigation measures. We develop a Susceptible-Exposed-

Infected-Recovered mathematical model to highlight the differences in the transmission of the B.1.617.2 delta vari-

ant and the original SARS-CoV-2. Theoretical results for the well-posedness of the model are discussed. A Deep

neural network is utilized and a deep learning algorithm is developed to learn the time-varying heterogeneous trans-

mission rates for each variant. The accuracy of the algorithm for the model is shown using error metrics in the

data-driven simulation for COVID-19 variants in the US states of Florida, Alabama, Tennessee, and Missouri.

Short-term forecasting of daily cases is demonstrated using long short term memory neural network and an adaptive

neuro-fuzzy inference system.

Keywords: deep neural network, data-driven simulation, heterogeneous transmission rates, COVID-19,

multi-variants

1. Introduction

COVID-19 was first reported in China in 2019 [1], it has since become a global pandemic. In recent months,

there have been reports of mutating variants of the virus [2]. In 2021, the dominant mutant variant of COVID-

19 was the B.1.617.2 delta variant [3]. Effort to combat the spread of COVID-19 have included combinations of

pharmaceutical (vaccination and hospitalization) and non-pharmaceutical (social distancing, contact tracing, and5

facial mask) measures.

Prior to the onset of COVID-19 mutating variants in the US, the progress seen in the data from several states

prompted the ease of the various non-pharmaceutical measures. Amid the news that several states had vaccinated

over 70% of its population and a few states had vaccinated between 60%−70% of its population, vaccination effort

began to slow down in many US states. As a result, the existence of mutating variants resulted in a resurgence in10

cases of infections. The Center for Disease Control and Prevention (CDC) reported that the dominant variant in the
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US in 2021 was the B.1.617.2 delta variant. According to the World Health Organization (WHO), many variants

were first reported in the United Kingdom and South Africa and in recent months, the USA, Europe, China, Brazil,

and Japan have all reported mutating variant infected cases.

We present a data-driven deep learning algorithm for a model consisting of time-varying transmission rates for15

each active variant. Using infected daily cases data, we learn the form of the time-varying transmission rates, to

reveal a timeline of the impact of mitigation measures on the transmission of COVID-19 [4, 5]. It can also be

demonstrated that this algorithm shows improvement on short-term forecasting when combined with a recurrent

neural network and an adaptive neuro-fuzzy inference system.

Neural networks are universal approximators of continuous functions [6, 7]. Feedforward neural networks20

(FNN) have been used to learn approximate solutions of differential equations. In [8], FNN was used to develop

differential equation solvers and parameter estimators by constraining the residual. This FNN is called the Physics

Informed Neural Network (PINN). PINN has been used to simulate pandemic spread, see [9], where the model

parameters were taken to be constants. In [10], an algorithm that combines PINN with Long Short-term Memory

(LSTM) is presented to solve an epidemiological model and identify weekly and daily time-varying parameters.25

The paper is organized as follows. In Section 2, we introduce and discuss the multi-variant SEIR model and the

time-varying transmission rate of each variant. The well posedness of the model is discussed in Section 2.2. The

neural network structure of the Epidemiology neural network EINN is presented in 3. Data-driven simulation of

COVID-19 data is shown in Sections 4. A comparison of a recurrent neural network based forecast and an adaptive

neuro-fuzzy inference system based forecast is presented in 6. The performance error metrics of EINN is discussed30

in Section 7. The paper is summarized in Section 8.

2. Multi-variant SEIR model

We assume that the total population N(t)=N at any given time is distributed among the following compartments:

susceptible (S), exposed (E), Infectious (Ii), i = 1, . . . ,M, and recovered (R), where M is the number of different

variants. The interaction between the compartments is shown in Figure 1.35

Figure 1: Transfer diagram between the compartments
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As shown in Figure (1), the susceptible individuals enter the exposed compartment at the rate 1
N ∑

M
i=1 βi(t)Ii,

where βi(t) is the transmission rate of variant i. The exposed individuals progress to the ith infected compartment

at the rate ηi. The ith infected compartment recover at the rate of γiIi.

We assume a natural death rate µ , given by µ = 1
LFE×365 , where LFE denotes the life expectancy. For simplicity,

it is assumed that the birth rate of the population is equal to the death rate. The parameter η is the transmission40

rate from the exposed to the various infectious sub-compartments, γ
−1
i is the mean symptomatic infectious period

for the ith variant. The parameter ν(t) represent the time-dependent removal rate of the vaccinated individuals from

the susceptible compartment. We assume that any variant does not super-infect another variant, so there are no

interactions between the infectious sub-compartments.

Based on the transfer diagram depicted in Figure 1, the mathematical model for a multi-variant COVID-1945

pandemic with heterogeneous transmission rates is given by:

dS
dt

= µN− S
N

M

∑
i=1

βi(t)Ii−
(

ν(t)+µ

)
S

dE
dt

=
S
N

M

∑
i=1

βi(t)Ii− (η +µ)E

dIi

dt
= ηiE− (γi +µ)Ii, i = 1, . . . ,M

dR
dt

=
M

∑
i=1

γiIi +ν(t)S−µR

(1)

subject to non-negative initial conditions

S(0) = S0, E(0) = E0, Ii(0) = Ii,0, i = i, . . . ,M, R(0) = R0.

The parameter η is defined as: η = ∑
M
i=1 ηi, and the total population is

N(t) = S(t)+E(t)+
M

∑
i=1

Ii(t)+R(t).

The differential equation satisfied by the total population size is obtained by adding all the equations in (1), that

is, dN
dt = 0 and thus N is constant. The model parameters are summarized in Table 1.

Time-varying transmission rates have been shown to efficiently model the spread of COVID-19 [4, 11]. Next,

will discuss the form of the time-varying transmission rates for each variant.50

2.1. Variant-based time-varying transmission rates

Time-varying transmission rates in (1) incorporates the impact of governmental actions, and the public response

[12]. We consider the transmission rates of the form

βi(t) = β
0
i exp(−κit), 1≤ i≤M. (2)
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where κi in (2) is the infectiousness factor for each i th variant. However, we define (1+τi) to be the factor by which

a particular variant is more infectious than the original variant SARS-CoV-2. And so, the following relationship exist55

between each mutating variant and the SARS-CoV-2 variant (3).

βi(t) = β1(t)(1+ τi), 2≤ i≤M. (3)

In (3), β1(t) is the transmission rate for the original variant SARS-CoV-2. The transmission rates of the sub-

sequent mutating variants are given by βi(t), i = 2, . . . ,M, where M represents the number of mutating COVID-19

variants. Although the publicly available data reports the daily infected cases, there were reports that suggest hat the

dominant variant, B.1.617.2 delta variant, to be twice as infectious as the original variant SARS-CoV-2. According60

to CDC reports [3, 13], the delta variant accounted for 1.3% of total infected cases in May, 2021, 9.5% in June, and

in August it accounted for 93% of the total infected cases.

Parameter Notation Range Remark Reference

Baseline transmission rate for each ith variant β 0
i [0,1) fitted using daily cases data [4]

Emigration rate µ
1

LFE×365 constant [14]

Mean latent period η−1 2−14(days) constant [14]

recovery rate for each ith variant γi [0,1) constant

infectiousness factor for each ith variant κi [0,1) constant

Table 1: Summary table of parameters in model (1)

2.2. Well-posedness of the model

Definition 1 ([15], Locally Lipschitz continuity). Let d1,d2 ∈ N and S be a subset of Rd1 . A function F : S→ Rd2

is Lipschitz continuous on S if there exists a nonnegative constant L≥ 0 such that65

|F(x)−F(y)| ≤ L|x− y|, x,y ∈ S. (4)

Let U be an open subset of Rd1 , and let F : U → Rd2 . We shall call F locally Lipschitz continuous if for every

point x0 ∈U there exists a neighborhood V of x0 such that the restriction of F to V is Lipschitz continuous on V .

We consider a more general framework of model (1)

z′(t) = G(z(t)), z(0) = z0, (5)

where z(t) = (x1(t),x2(t), . . . ,xn(t))T and G(z(t)) = (g1(z(t)),g2(z(t)), . . . ,gn(z(t)))T , the initial condition z0 ∈Rn.

We state the following theorem.
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Theorem 2.1 ([15]). If G : Rn → Rn is locally Lipschitz continuous and if there exist nonnegative constants B, K70

such that

|G(z(t))| ≤ K |z(t)|+B, z(t) ∈ Rn, (6)

then the solution of the initial value problem (5) exists for t > 0, and

|(z(t))| ≤ |z0| · exp(K |t|)+ B
K
· (exp(K · |t|)−1), t > 0, (7)

Lemma 2.2. For each ith variant, i ∈ {1, . . . ,M}, the time varying transmission rates ν ,βi : [0,∞)→ [0,∞) are

Lipschitz continuous and contnuously differentiable. There exists βmin,βmax > 0 and νminνmax > 0 such that βmin ≤

βi(t)≤ βmax, νmin ≤ ν(t)≤ νmax for all t.75

Theorem 2.3. The nonlinear first order system of differential equations (1) has at least one solution which exists

for t ∈ [0,∞).

Proof. Let z(t) = (S(t),E(t), I1(t), . . . , IM(t),R(t))T , we can set

G : RM+3→ RM+3, z(t)→


µN− S

N ∑
M
i=1 βi(t)Ii−

(
ν(t)+µ

)
S

S
N ∑

M
i=1 βi(t)Ii− (η +µ)E

ηiE− (γi +µ)Ii, i = 1, . . . ,M

∑
M
i=1 γiIi +ν(t)S−µR

 (8)

G is locally Lipschitz continuous, using supremum norm || f (t)|| := sup
t∈[a,b]

| f (t)|, we have

||G(z(t))||= sup
t∈[0,∞)

{∣∣∣∣∣µN− S(t)
N

M

∑
i=1

βi(t)Ii(t)−
(

ν(t)+µ

)
S(t)

∣∣∣∣∣,
∣∣∣∣∣S(t)N

M

∑
i=1

βi(t)Ii− (η +µ)E(t)

∣∣∣∣∣,∣∣∣ηiE(t)− (γi +µ)Ii(t), i = 1, . . . ,M
∣∣∣, ∣∣∣ M

∑
i=1

γiIi(t)+ν(t)S(t)−µR(t)
∣∣∣}

≤ sup
t∈[0,∞)

{
µN +βmax

∣∣∣∣∣S(t)N

M

∑
i=1

Ii(t)

∣∣∣∣∣+(νmax +µ)|S(t)|,βmax

∣∣∣∣∣S(t)N

M

∑
i=1

Ii(t)

∣∣∣∣∣+(η +µ)|E(t)|,

ηi|E(t)|+(γi +µ)|Ii(t)|,γi

M

∑
i=1
|Ii(t)|+νmax|S(t)|+µ|R(t)|

}
≤ sup

t∈[0,∞)

{
µN +βmax|S(t)|+(νmax +µ)|S(t)|,βmax|S(t)|+(η +µ)|E(t)|,

ηi|E(t)|+(γi +µ)|Ii(t)|,γi

M

∑
i=1
|Ii(t)|+νmax|S(t)|+µ|R(t)|

}
≤ K||z(t)||.

So by Theorem 2.1, and the boundedness of the time-varying nonlinear functions from Lemma 2.2, the nonlinear

initial value problem 1 has a solution for all time.80
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2.3. Basic reproduction number and equilibria stability

The basic reproduction number R0 is the expected number of secondary infections that a single infectious

individual will generate on average within a susceptible population.

Definition 2. The disease-free equilibrium of (1) is given by

(S∗,E∗, I∗1 , . . . , I
∗
M,R∗) = (S0,0,0, . . . ,0,0).

The basic reproduction number R0 is calculated for the case when βi(t) = β 0
i , i ∈ {1, . . . ,M}. Applying the

next-generation operator approach [16], the reproduction number R0 is obtained as the spectral radius of the next

generation matrix FV−1, where

F =


0 β 0

1 . . . β 0
M

0 0 . . . 0
...

...
...

...

0 0 . . . 0

 , V =



η +µ 0 0 . . . 0

−η1 γ1 +µ 0 . . . 0

−η2 0 γ2 +µ . . . 0
...

...
...

...
...

−ηM 0 0 . . . γM +µ


.

The basic reproduction number R0 is computed as follows in (9)

R0 =
M

∑
i=1

β 0
i ηi

(γi +µ)(η +µ)
. (9)

Next, we analyze the local asymptotic stability of the disease-free equilibrium in Definition 2.85

Theorem 2.4. The disease-free equilibrium (S∗,E∗, I∗1 , . . . , I
∗
M,R∗) of (1) is locally asymptotically stable if R0 < 1.

Proof. The Jacobian of the right hand side of (1) at the equilibrium point is given by

J =



−(ν +µ) 0 −β 0
1 −β 0

2 . . . −β 0
M 0

0 −(η +µ) β 0
1 β 0

2 . . . β 0
M 0

0 η1 −(γ1 +µ) 0 . . . 0 0

0 η2 0 −(γ2 +µ) . . . 0 0
...

...
...

...
...

...
...

0 ηM 0 0 . . . −(γM +µ) 0

ν 0 γ1 γ2 . . . γM −µ


If M = 1, the eigenvalues of the Jacobian matrix are given as follows:

λ1 =−µ,λ2 =−(ν +µ),λ3 =
1
2

(
−A−B

)
,λ4 =

1
2

(
A−B

)
.
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where

A =
√

4β 0
1 η1 +(η1− γ1)2,

B = η1 +2µ + γ1.

Clearly, A,B > 0 and A < B, so that λ1,λ2,λ3,λ4 < 0. Similarly, we can show negative eigenvalues for M ≥ 2. So

the disease-free equilibrium is locally asymptotically stable.

3. Epidemiology Informed Neural Network (EINN)

A Feedforward Neural Network (FNN) composed of L layers, t inputs and an output N can be represented as

the following function

N (t;Σ) = σ(WLσ(. . .σ(W2σ(W1t +b1)+b2) . . .)+bL), (10)

where Σ := (W1, . . . ,WL,b1, . . . ,bL). The neural network weight matrices are Wl , l = 1, . . . ,L, while the bias vectors

are bl , l = 1, . . . ,L. Here, σ is the activation function. Given a collection of sample pairs (tk,uk), k = 1, . . .K, where

u is some target function, the goal is to find Σ∗ by solving the following optimization problem

Σ
∗ = argmin

1
K

K

∑
k=1
||N (tk;Σ)−uk||22. (11)

The function 1
K ∑

K
k=1 ||N (tk;Σ)− uk||22 on the right hand side of (11) is called the mean squared error (MSE) loss90

function. A major task in training a network is to determine the suitable number of layers and the number of neurons

per layer needed, the choice of activation function, and an appropriate optimizer for the loss function [17].

EINN is a form of Feedforward Neural Network that includes the known epidemiology dynamics in its loss

function. EINN is adapted for the SEIR model (1), where the Mean Square Error (MSE) of this neural network’s

loss function includes the known epidemiology dynamics such as a lockdown, while other mitigation measures such95

as social distancing, and contact tracing are detected by the time-varying transmission rate. The output of EINN are

the learned solutions to the SEIR model (1) denoted by S(t j;ψ;ρ), E(t j;ψ;ρ), I(t j;ψ;ρ), R(t j;ψ;ρ), j = 1, . . . ,T .

Here, ψ represent the neural network weights and biases while ρ represent the epidemiology parameters and T

is the number of days in our dataset. Next, we set-up time-varying transmission rate networks whose outputs are

βi(t j;πi;κi), j = 1, . . . ,T , for i = 1, . . . ,M. Each πi represent the weights and biases of each ith network and κi is the100

infectiousness factor for each ith variant. The training data is generated using cubicspline and denoted by Ĩ(t j) and

Ṽ (t j), j = Tν , . . . ,T . Here Tν is an integer that correspond to the vaccination start date in the dataset. The B.1.617.2

delta variant was first reported in the USA in May, Tδ is an integer that correspond to May 4th, 2021. We observe

that training data is not available for all the compartments in the SEIR model, however, EINN is able to capture the

epidemiology interactions between the compartments because the residual of equation (1) is included in the MSE105

loss function.
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Figure 2: Schematic diagram of the Epidemiology Informed Neural Network with nonlinear time-varying transmission rate.
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The MSE loss function for EINN is given by,

MSE =
1
Tδ

Tδ

∑
j=1

∣∣∣I1(t j;ψ;ρ)− Ĩ(t j)
∣∣∣2 + 1
|T −Tδ |

T

∑
j=Tδ

∣∣∣ M

∑
i=1

Ii(t j;ψ;ρ)− Ĩ(t j)
∣∣∣2

+
1
Tν

Tν

∑
j=1

∣∣∣ν(t j;ψ;ρ)−0
∣∣∣2 + 1
|T −Tν |

T

∑
j=Tν

∣∣∣ν(t j;ψ;ρ)S(t j;ψ;ρ)−Ṽ (t j)
∣∣∣2

+
M

∑
i=2

∣∣∣Ii(tδ1 ;ψ;ρ)− pδ1 Ĩ(tδ1)
∣∣∣2 + M

∑
i=2

∣∣∣Ii(tδ2 ;ψ;ρ)− pδ2 Ĩ(tδ2)
∣∣∣2

+
1
Tδ

M

∑
i=2

Tδ

∑
j=1

∣∣∣βi(t j;πi;κi)−0
∣∣∣2

+
1

|T −Tδ |

M

∑
i=2

T

∑
j=Tδ

∣∣∣β1(t j;π1;κ1)(1+ τi)−βi(t j;πi;κi)
∣∣∣

+
5

∑
l=1

Ll ,

(12)

where the residual Ll , l = 1, . . .5, is as follows

L1 =
1
T

T

∑
j=1

∣∣∣dS(t j;ψ;ρ)

dt j
+

S(t j;ψ;ρ)

N

( M

∑
i=1

βi(t j;πi;κi)Ii(t j;ψ;ρ)
)
+
(

ν(t j;ψ;ρ)+µ

)
S(t j;ψ;ρ)−µN

∣∣∣2
L2 =

1
T

T

∑
j=1

∣∣∣dE(t j;ψ;ρ)

dt j
−

S(t j;ψ;ρ)

N

( M

∑
i=1

βi(t j;πi;κi)Ii(t j;ψ;ρ)
)
+(η +µ)E(t j;ψ;ρ)

∣∣∣2
L3 =

1
T

M

∑
i=1

T

∑
j=1

∣∣∣dIi(t j;ψ;ρ)

dt j
−ηiE(t j;ψ;ρ)+(γi +µ)Ii(t j;ψ;ρ)

∣∣∣2
L4 =

1
T

T

∑
j=1

∣∣∣dR(t j;ψ;ρ)

dt j
−

M

∑
i=1

γiIi(t j;ψ;ρ)−ν(t j;ψ;ρ)S(t j;ψ;ρ)+µR(t j;ψ;ρ)
∣∣∣2

L5 =
1
T

T

∑
j=1

∣∣∣N− (S(t j;ψ;ρ)+E(t j;ψ;ρ)+
M

∑
i=1

Ii(t j;ψ;ρ)+R(t j;ψ;ρ))
∣∣∣2.

(13)

where η = ∑
M
i=1 ηi, i = 1, . . .M.

The daily infected cases, the vaccinated cases, the known COVID-19 variants facts and the transmission rates are

enforced in the mean square error (MSE) (12), see Figure (2). For instance, pδ1 and pδ2 correspond to the proportion110

of daily cases that was due to the mutating variants as reported by the CDC [13].
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Algorithm 1 EINN algorithm for SEIR model with time-varying transmission rate
1: Construct EINN

specify the input: t j , j = 1, . . . ,T

Initialize EINN parameter: ψ

Initialize the mathematical model parameters: ρ = [γi], i = 1, . . . ,M.

Output layer: S(t j;ψ;ρ), E(t j;ψ;ρ), I(t j;ψ;ρ), R(t j;ψ;ρ), j = 1, . . . ,T

2: construct neural networks: βi, j = 1, . . . ,M

specify the input: t j , j = 1, . . . ,T

Initialize the neural network parameter: φ

Specify β 0
i obtained by fitting daily cases

Output layers : βi(t j;πi;κi)

βi(t j;πi;κi) = (1+ τi)β1(t j;π1;κ1), i≥ 2 (14)

3: Specify EINN training set

Training data: using cubicspline, generate Ĩ(t j) and R̃(t j), j = 1, . . . ,T .

4: Train the neural networks

Specify an MSE loss function:

MSE =
1

Tδ

Tδ

∑
j=1

∣∣∣I1(t j;ψ;ρ)− Ĩ(t j)
∣∣∣2 + 1
|T −Tδ |

T

∑
j=Tδ

∣∣∣ M

∑
i=1

Ii(t j;ψ;ρ)− Ĩ(t j)
∣∣∣2

+
1
Tν

Tν

∑
j=1

∣∣∣ν(t j;ψ;ρ)−0
∣∣∣2 + 1
|T −Tν |

T

∑
j=Tν

∣∣∣ν(t j;ψ;ρ)S(t j;ψ;ρ)−Ṽ (t j)
∣∣∣2

+
M

∑
i=2

∣∣∣Ii(tδ1 ;ψ;ρ)− pδ1 Ĩ(tδ1 )
∣∣∣2 + M

∑
i=2

∣∣∣Ii(tδ2 ;ψ;ρ)− pδ2 Ĩ(tδ2 )
∣∣∣2

+
1

Tδ

M

∑
i=2

Tδ

∑
j=1

∣∣∣βi(t j;πi;κi)−0
∣∣∣2

+
1

|T −Tδ |

M

∑
i=2

T

∑
j=Tδ

∣∣∣β1(t j;π1;κ1)(1+ τi)−βi(t j;πi;κi)
∣∣∣

+
5

∑
l=1

Ll ,

(15)

Minimize the MSE loss function: compute argmin
{ψ;πi}

(MSE) using an optimizer such as the L−BFGS−B.

5: return EINN solution

S(t j;ψ;ρ), E(t j;ψ;ρ), Ii(t j;ψ;ρ), R(t j;ψ;ρ), j = 1, . . . ,T , i = 1, . . . ,M.

epidemiology parameters: γi, i = 1, . . . ,M.

vaccination parameter: ν

6: return time-varying epidemiology parameter:

βi(t j;πi;κi), j = 1, . . . ,T , i = 1, . . . ,M.

Infectiousness factor: κi, i = 1, . . . ,M.

parameter: τi, i = 2, . . . ,M.
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4. Data-driven simulation of COVID-19 variants

We present results of the implementation of the EINN algorithm in Figure (2) for COVID-19 data from Alabama,

Missouri, Tennessee, and Florida. We consider data from March 2020 to September 2021, during which there were

two dominant variants;the original variant SARS-CoV-2 and the delta variant (B.1.617.2). CDC report indicate that115

1.3% of the total infected cases were due to the delta variant in May 4th 2021 [13]. The EINN algorithm learns the

infected cases, and the time-varying transmission rates due to each variant. In Table (2)–(5), pre-γ1, post-γ1, post-γ2

denote the recovery rate of people infected due to the original variant SARS-CoV-2 before the onset of the delta

variant, recovery rate of people infected due to the original variant SARS-CoV-2 after the onset of the delta variant,

and recovery rate of people infected due to the delta variant after the onset of the delta variant respectively.120

The CDC reports that by July 31st, 2021, the proportions of infected cases that are due to the B.1.617.2 delta

variant in Alabama was 82.6%, Tennessee was 67.4%, Missouri 53.9%, and in Florida, it was 86.4% [3]. The CDC

also reported that in the USA, the delta variant accounted for about 1.3% of the infected cases.

We seek to learn τi for an ith mutating variant. For the simulations in this section, we observed that the delta

variant is a dominant mutating variant therefore we included only two variants, the SARS-CoV-2 and the delta125

variant.

Parameters Mean Std

pre- γ1 0.02423 0.01266
post- γ1 0.00395 0.00717
post- γ2 0.00463 0.00768
η1 0.12437 0.04933
η2 0.20893 0.04933
κ1 1.07385 0.06271
κ2 1.13052 0.02809
(1+ τ) 1.22391 0.10176

Table 2: Using Alabama daily cases from March 2020 to September 2021, the EINN Algorithm (1) learns the model parameters
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Figure 3: learned Alabama Susceptible, Exposed, and Recovered daily population
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Figure 4: Alabama daily cases and time-varying transmission rates

Parameters Mean Std

pre- γ1 0.02344 0.00613
post- γ1 0.00911 0.00426
post- γ2 0.02095 0.01794
η1 0.15912 0.03381
η2 0.17420 0.03383
κ1 1.01114 0.03561
κ2 1.10474 0.01358
(1+ τ) 1.15537 0.08817

Table 3: Using Missouri daily cases from March 2020 to September 2021, the EINN Algorithm (1) learns the model parameters
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Figure 5: learned Missouri Susceptible, Exposed, and Recovered daily population
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Figure 6: Missouri daily cases and time-varying transmission rates

Parameters Mean Std

pre- γ1 0.01259 0.01111
post- γ1 0.00587 0.00821
post- γ2 0.00849 0.01081
η1 0.13721 0.03429
η2 0.19611 0.03427
κ1 1.04761 0.03035
κ2 1.13552 0.02867
(1+ τ) 1.09879 0.09738

Table 4: Using Tennessee daily cases from March 2020 to September 2021, EINN Algorithm (1) learns the model parameters
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Figure 7: learned Tennessee Susceptible, Exposed, and Recovered daily population
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Figure 8: Tennessee daily cases and time-varying transmission rates

Parameters Mean Std

pre- γ1 0.02968 0.01594
post- γ1 0.00943 0.00985
post- γ2 0.00576 0.00516
η1 0.09304 0.06144
η2 0.24027 0.06143
κ1 1.03508 0.02477
κ2 1.13773 0.00892
(1+ τ) 1.12553 0.11431

Table 5: Using Florida daily cases from March 2020 to September 2021, EINN Algorithm (1) learns the model parameters
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Figure 9: learned Florida Susceptible, Exposed, and Recovered daily population
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Figure 10: Florida daily cases and time-varying transmission rates

5. Forecasting daily cases

Forecasting the spread of infectious diseases in many studies are based on multiple linear regression (MLR),

ordinary least squares regression (OLSR), principal component regression (PCR) and partial least squares regres-

sion (PLSR) and statistical methods such as the Auto Regressive Moving Average (ARIMA) and its many vari-130

ants [18, 19, 20]. These statistical methods are not optimal for nonlinear predictive task. This has motivated a shift

towards techniques that rely on neural networks and neuro-fuzzy models [21]. In this Section, we present an hy-

brid neural network that combines the simplicity and nonlinear learning capabilities of the Epidemiology-informed

neural network (EINN) as well as the fuzzy inference system (ANFIS).

Adaptive neuro-fuzzy inference system (ANFIS), an hybrid neural network itself, is a combination of fuzzy135

logic and a feedforward neural network. It incorporates the advantages of both methods including learning capabil-

ities, interpretability, quick convergence, adaptability and high accuracy. ANFIS displays excellent performance in

approximation and prediction of nonlinear relationships in various fields [22].

The Adaptive Neuro-Fuzzy Inference System (ANFIS) was introduced in [23]. It combines a neural network

with a fuzzy inference system (FIS) based on “IF-THEN” rules. One major advantage of FIS is that it does not140

require knowledge of the main physical process as a pre-condition. ANFIS combines FIS with a backpropagation

algorithm. These techniques provide a method for the fuzzy modeling procedure to learn from the available dataset,

in order to compute the membership function parameters that best allow the fuzzy inference system to track the

given input/output data.

To forecast the transmission of a multi-variant COVID-19, we present an efficient deep learning forecast model145

which combines two neural networks, we solve the ODE system using an Epidemiology Informed Neural Network

(EINN) and we forecast using an adaptive neuro-fuzzy system (ANFIS), which we called the EINN-ANFIS model.
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6. Comparison of Forecasting techniques

We present results of the implementation of ANFIS, EINN-ANFIS, LSTM, EINN-LSTM for COVID-19 data

from Alabama, Missouri, Tennessee, and Florida from March 2020 to September 2021. In the ANFIS approach, We150

used 4 regressors, 12 membership rules, and learning rate of 0.002. Training was done using 300 epochs, where we

used the adams optimizer and for the loss function, we used the mean square error. The EINN-ANFIS is a hybrid

neural network, where EINN is first used to train the daily cases dataset and a second round of training is done using

ANFIS. In the LSTM approach, we used 4 input layers which corresponds to the daily cases at times t, t +1, t +2,

and t +3. The adams optimizer is also used in training the LSTM with 20 epochs and the loss function also uses the155

mean square error. In the EINN-LSTM approach, a first batch of training is done using the EINN algorithm and then

a second batch of training is done using LSTM. In Tables (6)–(9), we present the validation loss of each method.

Method Mean Std

ANFIS 0.00048 0.00098
EINN-ANFIS 0.00032 0.00050
LSTM 0.00141 0.00004
LSTM-EINN 0.00110 0.00006

Table 6: Validation loss in the ANFIS, EINN-ANFIS, LSTM, and LSTM-EINN forecasting technique for Alabama daily cases from March 2020
to September 2021.

Method Mean Std

ANFIS 0.00011 0.00019
EINN-ANFIS 0.00004 0.00006
LSTM 0.00333 0.00003
LSTM-EINN 0.00118 0.00012

Table 7: Validation loss in the ANFIS, EINN-ANFIS, LSTM, and LSTM-EINN forecasting technique for Missouri daily cases from March 2020
to September 2021.

Method Mean Std

ANFIS 0.00061 0.00125
EINN-ANFIS 0.00033 0.00056
LSTM 0.00267 0.00011
LSTM-EINN 0.00183 0.00009

Table 8: Validation loss in the ANFIS, EINN-ANFIS, LSTM, and LSTM-EINN forecasting technique for Tennessee daily cases from March
2020 to September 2021.

As can be observed from these Tables (6)–(9) EINN-ANFIS is an improvement over ANFIS and similarly,

EINN-LSTM is an improvement over LSTM.
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Figure 11: Alabama daily cases forecasting using ANFIS, EINN-ANFIS, LSTM, LSTM-EINN

Method Mean Std

ANFIS 0.00199 0.00284
EINN-ANFIS 0.00249 0.00347
LSTM 0.00169 0.00009
LSTM-EINN 0.00149 0.00014

Table 9: Validation loss in the ANFIS, EINN-ANFIS, LSTM, and LSTM-EINN forecasting technique for Florida daily cases from March 2020
to September 2021.
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Figure 12: Missouri daily cases forecasting using ANFIS, EINN-ANFIS, LSTM, LSTM-EINN
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Figure 13: Tennessee daily cases forecasting using ANFIS, EINN-ANFIS, LSTM, LSTM-EINN
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Figure 14: Florida daily cases forecasting using ANFIS, EINN-ANFIS, LSTM, LSTM-EINN
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7. Performance analysis of error metrics160

The following error metrics are used in our data driven simulation:

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
Ns

Ns

∑
i=1

(Yi− Ỹi)2

,

where Y and Ỹ are the predicted and original values, respectively.

• Mean Absolute Error (MAE):

MAE =
1
Ns

Ns

∑
i=1
|Yi− Ỹi|

.165

• Mean Absolute Percentage Error (MAPE):

MAPE =
1
Ns

Ns

∑
i=1
|Yi− Ỹi

Yi
|

.

• Root Mean Squared Relative Error (RMSRE):

RMSRE =

√√√√ 1
Ns

Ns

∑
i=1

(
Yi− Ỹi

Yi
)2

,

Ns represents the sample size of the data.170

In Table 10 We provide a comparison of error metrics for EINN using random splits for the training and test

data.
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State RMSE MAE MAPE RMSRE

Florida 0.00768642 0.0868862 0.62593067 1.4576211

Tennessee 0.01003919 0.07956579 1.41574097 3.11372066

Alabama 0.00772795 0.08293544 0.76998496 0.24813209

Missouri 0.0083841 0.09985308 1.65703082 0.44569263

Table 10: Error metrics for random split

8. Conclusion

We have presented a data-driven deep learning algorithm that learns time-varying transmission rates of multi-

variant in an infectious disease such as COVID-19. The algorithm we presented learns the nonlinear time-varying175

transmission rates without a pre-assumed pattern as well as predict the daily cases and daily recovered populations.

We learn these population groups using only daily cases data. This approach is found useful when the dynamics

of an epidemiological model such as an SEIR model is impacted by various mitigation measures. The algorithm

presented in this paper can be adapted to most epidemiology models. Using US daily cases data, we demonstrate

that the algorithm presented in this work can be combined together with recurrent neural networks and ANFIS for180

an improved short-term forecast. This study is seen useful in the event of a pandemic such as COVID-19, where

public health interventions and public response and perceptions interfere in the interaction of the compartments in

an epidemiology model.

The computer codes will be available at https://github.com/okayode/EINN-COVID.
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