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Abstract

Epidemiological models with constant parameters may not capture satisfactory infection patterns in the

presence of pharmaceutical and non-pharmaceutical mitigation measures during a pandemic, since infec-

tiousness is a function of time. In this paper, an Epidemiology-Informed Neural Network algorithm is in-

troduced to learn the time-varying transmission rate for the COVID-19 pandemic in the presence of various

mitigation scenarios. There are asymptomatic infectives, mostly unreported, and the proposed algorithm

learns the proportion of the total infective individuals that are asymptomatic infectives. Using cumulative

and daily reported cases of the symptomatic infectives, we simulate the impact of non-pharmaceutical mit-

igation measures such as early detection of infectives, contact tracing, and social distancing on the basic

reproduction number. We demonstrate the effectiveness of vaccination on the transmission of COVID-19.

The accuracy of the proposed algorithm is demonstrated using error metrics in the data-driven simulation

for COVID-19 data of Italy, South Korea, the United Kingdom, and the United States.

Keywords: deep-learning, asymptotic population, COVID-19, mitigation measures, time-varying

transmission rate, reproduction number

1. Introduction

In December 2019, a new respiratory illness began to spread throughout Wuhan, China. The virus

responsible for this illness is the SARS-CoV-2 and the disease is called COVID-19 [1]. It quickly spread

through Wuhan, a city of 11 million people in Hubei province. It infected tens of thousands of people over

the ensuing weeks. China imposed major restrictions on travel and work, and by the end of February, cases

of COVID-19 had slowed inside the country while spiking all over the world. COVID-19 data from different

countries reflects various mitigation measures [2, 3], such as lockdown, social distancing, early detection

of infectives, contact tracing, and vaccination [4, 5, 6]. Many data-driven approaches in infectious disease

modeling are linear models. When using linear regression, statistical methods such as Auto Regressive

Moving Average (ARIMA) and Moving Average (MA) rely on assumptions which make it impossible to
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forecast transmission rate at any given time during a pandemic [7]. Time-varying transmission rates have

been suggested to efficiently model the spread of COVID-19. For example, fast methods for estimating

time-varying transmission rate were introduced in [8]; however, they reported that their method suffers

from extreme sensitivity to noise. In [9], a first-principle machine learning approach was presented to

predict time-dependent parameters, but these parameters require good initial guesses. In March and April

2020, many countries instituted widespread lockdown [10]. A model-fitting approach for lockdown and

lockdown relaxation is presented in [11], which requires good estimation of the model parameters as well as

quantification of the impact of relaxation. In [12], the time-varying reproduction number Rt is estimated

for counties in Georgia, USA, with a 95% confidence credible interval.

The first epidemiology model, the SIR model, was presented by Kermack and McKendrick in 1927

[13]. The SIR model has inspired several epidemiological studies of diseases like, Malaria and Dengue

fever [14] and recently COVID-19. A widely used threshold parameter for the spread or extinction of

an infectious disease in an epidemiology model is the basic reproduction number [15]. It is defined as

the average number of persons an infected person can infect. When the basic reproduction number is

less than one, the infectious disease vanishes. In the SIR model [13], the basic reproduction number is

computed as the ratio of the transmission rate to the recovery rate. In this paper, we adopt a variant of

the asymptomatic-SIR model presented in [16]. When the transmission and recovery rates are constants,

the basic reproduction number is given by the ratio of the transmission rate to a weighted sum of the

symptomatic and asymptomatic recovery rates. However, When the transmission rate is time-varying,

we use a modified reproduction, which we call the time-varying reproduction Rt. This time-varying

reproduction number, Rt, demonstrates the spread pattern of COVID-19 throughout the duration of the

pandemic.

There is an asymptomatic period for every infective individual in the range of 7 to 14 days [17]. There

are also asymptomatic infectives that never show symptoms but are infectious [16]. Early studies of the

spread of COVID-19 shows that some of the infectives are asymptomatic infectives [18, 19] and they are

mostly unreported in the publicly available data [16]. In [20], it was reported that the asymptomatic

infectives can spread the virus efficiently, and they are the silent spreaders of COVID-19, which has caused

difficulties in the control of the pandemic. Early in the pandemic, the Centers for Disease Control and

Prevention (CDC) estimates the proportion of the asymptomatic infectives to be 40% of the total infectives

in the USA [19]. A high population proportion of asymptomatic infectives was estimated in [18] for China

and Singapore. In [20], the proportion of Asymptomatic infectious patients in Wanzhou district before 10

April 2020 was 20%. [16] reported 10% of the total infectives were asymptomatic in northern Italy. In a

study conducted in England from June through September 2020 and in Spain from 27 April to 11 May

2020, the proportions of asymptomatic infectives in England and Spain were reported to be 32.4% and

33.0% respectively [21].

Deep learning [22] and Neural networks have found applications in function approximation tasks, since

2



neural networks are known to be universal approximators of continuous functions [23, 24]. Feedforward

neural networks (FNN) have been used to learn approximate solutions of differential equations. In [25],

FNN was combined with the traditional Cox model for survival analysis to predict the clinical outcome

of COVID-19 patients. In [26], FNN was used to develop differential equation solvers and parameter

estimators by constraining the residual. This FNN is called the Physics Informed Neural Network (PINN).

PINN has been used to simulate pandemic spread, see [27], where the model parameters were taken to

be constants [26, 28], PINN was used to solve nonlinear partial differential equations from data. PINN

has been used to solve system of ordinary differential equations [29] and system of fractional differential

equations [30]. In [31], an algorithm that combines PINN together with LSTM is presented to solve an

epidemiological model and identify weekly and daily time-varying parameters.

To overcome the limitations of statistical approaches, we present an Epidemiology-Informed Neural

Network (EINN) inspired by applying a PINN to epidemiology models. Given that it may not be possible

to know the most accurate form of a time-varying transmission rate, EINN algorithms is a viable option to

learn time-varying transmission rate and to detect the impact of mitigation measures from data. The EINN

loss function is extended to include some known epidemiology facts about infectious diseases. To detect

hidden details in the training data, a cubic spline interpolation is used to generate sufficient training

data. The proposed EINN algorithm can capture the dynamics of the spread of the disease and the

influence of various mitigation measure. Since asymptomatic infectives population is unreported in the

publicly available data [32]. EINN algorithm learns asymptomatic infectives population by training on

symptomatic infectives data that are available in the reported public data.

The paper is organized as follows. In Section 2, we introduce and discuss the asymptomatic-SIR model,

the neural network structure of EINN and the EINN algorithm for time-varying transmission rate. In

Section 3, data-driven simulation results for constant transmission rates, data-driven simulation results for

pharmaceutical and non-pharmaceutical mitigation measures, and data-driven simulation results for time-

varying transmission rates are presented. In Section 4, we discuss the mitigation measures, vaccination

efficacy, the time-varying transmission results and error metrics for data-driven simulation. Finally, a

summary of the results in this paper is presented in Section 5.

2. Materials and Methods

2.1. Asymptomatic-SIR Model

The asymptomatic-SIR model introduced in [16] assumes that some of the infectives are asymptomatic

infectives. This group is infectious despite not showing symptoms of COVID-19, probably are not tested,

and are usually unreported in the various publicly available data.

The asymptomatic-SIR model considers the following population compartments: the Susceptible (S),

the symptomatic Infectives (I) which correspond to the reported infectives in the publicly available data,
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and the asymptomatic Infectives (J) which correspond to the unreported infectives. The total infectives are

I+J . The rest of the compartments are the symptomatic Recovered (R) and the asymptomatic Recovered

(U). The symptomatic Infectives (I) recover at the rate γ, and the asymptomatic Infectives (J) recover

at the rate µ. I recover through isolation in the hospital or at home. On the other hand, the J recover

spontaneously. The vaccinated population, (V = κS), is a loss from the susceptible compartment: they are

added to the recovered compartments. β(t) is the time-varying transmission rate, it usually depends on the

infection vector. In the COVID-19 pandemic, β(t) depends also on contacts between individuals. κ is the

average percentage of individuals that are vaccinated daily. ξ represents the probability that an infective

individual is reported, while (1− ξ) is the probability that an infective is an asymptomatic infective. The

portion of the total infectives that are symptomatic and reported corresponds to ξ(I + J). On the other

hand, (1− ξ)(I + J) represents the asymptomatic infectives. N represents the total population (2). It is

assumed that N does not change throughout the pandemic and that infective individuals are immediately

infectious. The dynamics of the interactions between the compartments in Figure 1 can be represented by

the following system of ordinary differential equations with time-varying transmission rate β(t).

dS(t)

dt
= − 1

N
β(t)

(
I(t) + J(t)

)
S(t)− κS(t)

dI(t)

dt
=

1

N
β(t)ξ

(
I(t) + J(t)

)
S(t)− γI(t)

dJ(t)

dt
=

1

N
β(t)

(
1− ξ

)(
I(t) + J(t)

)
S(t)− µJ(t)

dR(t)

dt
= γI(t) + κξS(t)

dU(t)

dt
= µJ(t) + κ(1− ξ)S(t).

(1)

The continuity equation is given by

N(t) = S(t) + I(t) + J(t) +R(t) + U(t), t ≥ t0. (2)

The initial conditions are denoted by S(t0) = S0, I(t0) = I0, J(t0) = J0, R(t0) = R0, and U(t0) = U0,

where t ≥ t0 represent time in days and t0 is the start date of the pandemic in the model. The model

parameters are summarized in Table 1.
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Figure 1: Compartments in Asymptomatic-SIR model with vaccination

Parameter Notation Range Remark Reference

Baseline transmission rate β0 [0,1) fitted using early data [17, 9]

Probability that an Infected person is reported ξ [0, 1) constant [16]

Proportions of daily vaccinated individuals κ [0, 1) constant [17, 4]

recovery rate of symptomatic infectives γ [0,1) constant [16]

recovery rate of asymptomatic infectives µ [0,1) constant [16]

Table 1: Summary table of parameters in (1)

2.2. Time-Varying Transmission Rate

Time-varying transmission rate β(t) in (1) incorporates the impact of public health actions and the

public response to the actions [33, 2]. The formulation of β(t) in [33] includes temperature. This parameter

is not considered in the formulation presented in [2], since there is no evidence that temperature plays a

role in the transmission of COVID-19. Early in the transmission of COVID-19, the major public health

action was lockdown, which was followed by other measures such as social distancing, contact tracing,

masking, early detection of infectives and so on. We chose a formulation of β(t) that strongly reflects the

pre and post-lockdown periods. In [11] a sigmoid function is used to model a time-dependent decrease in

the transmission of COVID-19. In [16], a piecewise constant function is used to model β(t). A piecewise

time-varying transmission rate (3) is used to learn a time-dependent transmission rate β in eq. (1). In [16],
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the piecewise β(t) is defined as follows,

β(t) =



β0q1 t ≤M1

β0q2 M1 < t ≤M2

β0q3 M2 < t ≤M3

β0q4 M3 < t ≤M4

...

β0qn Mn < t.

(3)

The goal of the parameters q1, . . . , qn in (3) is to capture the exponential decrease observed in the

transmission rate β(t). We choose M1, . . . ,Mn in order to partition the pandemic timeline, according to

the onset of various mitigation measures.

We also formulate β(t) following the approach presented in [17, 34]. An exponentially decreasing

function is used to represent the transmission rate β(t) in (1) to model the impact of lockdown.

β(t) =

β0, 0 ≤ t ≤ K,

β0 exp (−η(t−K)), K < t

(4)

where K signifies the onset of government intervention including isolation, quarantine and lockdown. η is

the rate at which human contact decreases. We denote K to be the number of days between the date of

the first reported case of COVID-19 and the date lockdown was instituted.

When the transmission rate in (1) is assumed to be constant, (β(t) = β), the basic reproduction number

can be given by the ratio of the transmission rate to a weighted sum of the symptomatic and asymptomatic

recovery rates. However, we observed that this under-estimate the basic reproduction number (R0) for

the asymptomatic-SIR model Equation (1). Assuming a disease-free equilibrium of (1), given by

(S∗, I∗, J∗, R∗, U∗) = (S0, 0, 0, 0, 0)

Applying the next generation matrix approach [35], the basic reproduction number (R0) is obtained as

the spectral radius of the next generation matrix FV −1, where

F =

 βξ βξ

β(1− ξ) β(1− ξ)

 , V =

γ 0

0 µ

 .

so that

R0 =
β (ξµ+ (1− ξ)γ)

µγ
ξ ∈ (0, 1). (5)

If ξ = 0, R0 = β/µ, when all the infective population are asymptomatic.

If ξ = 1, R0 = β/γ, when all the infective population are symptomatic.
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Using data from Italy, South Korea, and the United States starting from the date of the first reported

cases in the respective countries to the day before vaccination data were reported. The cumulative infective

and recovered population data are observed to be non-exponential whenever a mitigation measure such

as a comprehensive lockdown is detected in the data. We take the total population N to be 60.36× 106,

51.64×106, and 328.2×106 in Italy, South Korea and the USA, respectively. In Figures 3a–5a, Mκ is zero

and so κ = 0 for all the period from the first reported cases to the day before vaccination data are reported.

In addition to learning the parameters, EINN learns ξ, the probability that an infective is reported. A

high value of ξ indicates a large number of reported infectives.

When the transmission rate is time-varying, we use a modified reproduction, which we call the time-

varying reproduction Rt. This time-varying reproduction number, Rt, demonstrates the spread pattern

of COVID-19 throughout the duration of the pandemic [16].

Rt =
β(t) (ξµ+ (1− ξ)γ)

µγ
ξ ∈ (0, 1). (6)

2.3. Neural Network Structure

2.3.1. Feedforward Neural Network (FNN)

An FNN can be represented as a function of L layers, t input vector and an output N

N (t; θ) = σ(WLσ(. . . σ(W2σ(W1t+ b1) + b2) . . .) + bL), (7)

where θ: = (W1, . . . ,WL, b1,. . . , bL). Wk, k = 1, . . . , L, is the set of the neural network weight matrices

while bk, k = 1, . . . , L, is the set of the bias vectors. σ is the activation function. Given a collection of

sample pairs (tj , uj), j = 1, . . .M , where u is some target function. The goal is to find θ∗ by solving the

optimization problem

θ∗ = arg min
θ

1

M

M∑
j=1

||N (tj ; θ)− uj ||22. (8)

The function 1
M

∑M
j=1 ||N (tj ; θ)− uj ||22 on the right-hand side of (8) is called the mean squared error

(MSE) loss function. A major task in training a network is to determine the suitable number of layers and

the number of neurons per layer needed, the choice of activation function, and an appropriate optimizer

for the loss function [36].

2.3.2. Epidemiology-Informed Neural Network (EINN)

EINN is a type of Feedforward Neural Network that includes the known epidemiology dynamics in its

loss function. In this paper, EINN is adapted for the asymptomatic-SIR model (1), where the Mean Square

Error (MSE) of this neural network’s loss function includes the known epidemiology dynamics such as a

lockdown, while other mitigation measures such as social distancing, and contact tracing are detected by

the time-varying transmission rate. The output of EINN are the learned solutions to the asymptomatic-

SIR model (1) denoted by S(tj ; θ;λ), I(tj ; θ;λ), J(tj ; θ;λ), R(tj ; θ;λ), U(tj ; θ;λ), j = 1, . . . ,M . Where
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θ represent the neural network weights and biases and λ represent the epidemiology parameters. M is

the number of training set. The network representing the time-varying transmission rate is denoted by

β(tj ;φ; η), j = 1, . . . ,M , The parameter φ represents the weights and biases of this network and η is the

exponential decay parameter. The training data are generated using cubic spline and denoted by Ĩ(tj),

R̃(tj), j = 1, . . . ,M and Ṽ (tj), j = 1, . . . ,Mκ from the given dataset. Here Mκ is the number of vaccination

days. We observe that training data are not available for all the compartments in the asymptomatic-SIR

model; however, EINN is able to capture the epidemiology interactions between the compartments because

the epidemiology model residual is included in the MSE loss function. The MSE loss function for EINN

with the time-varying transmission rate is given by

MSE =
1

M

M∑
j=1

||I(tj ; θ;λ)− Ĩ(tj)||22 +
1

M

M∑
j=1

||R(tj ; θ;λ)− R̃(tj)||22

+
1

Mβ

Mβ∑
j=1

||β(tj ;φ; η)− β̃(tj)||22

+
1

Mκ

Mκ∑
j=1

||κS(tj ; θ;λ)− Ṽ (tj)||22

+ ||J(0; θ;λ)− J̃(0)||22 + ||U(0; θ;λ)− Ũ(0)||22

+
1

M

6∑
i=1

M∑
j=1

||Li(tj ; θ;φ;λ; η)||22,

(9)

where the residual Li, i = 1, . . . 6 is as follows

L1(tj ; θ;φ;λ; η) =
dS(tj ; θ;λ)

dtj
+

1

N
β(tj ;φ; η)

(
I(tj ; θ;λ) + J(tj ; θ;λ)

)
S(tj ; θ;λ)

+ κS(tj ; θ;λ)

L2(tj ; θ;φ;λ; η) =
dI(tj ; θ;λ)

dtj
− 1

N
β(tj ;φ; η)ξ

(
I(tj ; θ;λ) + J(tj ; θ;λ)

)
S(tj ; θ;λ)

+ γI(tj ; θ;λ)

L3(tj ; θ;φ;λ; η) =
dJ(tj ; θ;λ)

dtj
− 1

N
β(tj ;φ; η)

(
1− ξ

)(
I(tj ; θ;λ) + J(tj ; θ;λ)

)
S(tj ; θ;λ)

+ µJ(tj ; θ;λ)

L4(tj ; θ;φ;λ; η) =
dR(tj ; θ;λ)

dtj
− γI(tj ; θ;λ)− κξS(tj ; θ;λ)

L5(tj ; θ;φ;λ; η) =
dU(tj ; θ;λ)

dtj
− µJ(tj ; θ;λ)− κ(1− ξ)S(tj ; θ;λ)

L6(tj ; θ;φ;λ; η) = N − (S(tj ; θ;λ) + I(tj ; θ;λ) + J(tj ; θ;λ) +R(tj ; θ;λ) + U(tj ; θ;λ)).

(10)

In Figure 2, EINN includes the time-varying infection as an output of the neural network. ICs repre-

sents the loss in the neural network output for the asymptomatic infectives J(0; θ) and the asymptomatic

recovered U(0; θ) at t = 0. KPs represent the known dynamics in the transmission rates pattern. M is the

number of training points. M does not necessarily correspond to the number of available data. M is gen-

erated by fitting the data with cubic splines. For instance, Ĩ(tj), j = 1, . . . ,M is the training data for the
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infectives after fitting with an interpolation function. Mβ is the number of training points used to enforce

the known dynamics of the transmission rates pattern. Since κ is the average percentage of individuals

that are vaccinated daily, Mκ is the number of days κ is not zero. Ṽ (tj) = κS̃(tj), j = 1, . . . ,Mκ, is the

daily vaccination data. The input to EINN is tj , j = 1, . . . ,M . To achieve good accuracy in the neural

network, we tune the hyperparameters; such as the number of layers, number of training points, and the

learning rate. In all the simulations presented in this paper, we used 4 hidden layers, 64 neurons per layer,

and the training loss was minimized in 40,000 iterations. Cubic splines are used to generate 3000 training

points from the original dataset. The loss function is minimized by a gradient-based optimizer such as the

adam optimizer [37].

Figure 2: Schematic diagram of the Epidemiology-Informed Neural Network with nonlinear time-varying transmission rate.

The term KPs represent the known dynamics in the transmission rates pattern and ICs represent the initial condition for

the asymptomatic population.

3. Results

3.1. Data-Driven Simulation Results for Constant Transmission Rates

Using data from Italy, South Korea, and the United States starting from the date of the first reported

cases in the respective countries to the day before vaccination data were reported. The cumulative infective

and recovered population data are observed to be non-exponential whenever a mitigation measure such

as a comprehensive lockdown is detected in the data. We take the total population N to be 60.36× 106,
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51.64×106, and 328.2×106 in Italy, South Korea and the USA, respectively. In Figures 3a–5a, Mκ is zero

and so κ = 0 for all the period from the first reported cases to the day before vaccination data are reported.

In addition to learning the parameters, EINN learns ξ, the probability that an infective is reported. High

value of ξ indicates large number of reported infectives.
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Figure 3: Simulation of Italy COVID-19 data; (a) The learned symptomatic infectives and recovered population by the

EINN Algorithm 1; (b) EINN Algorithm 1 learns the cumulative population of Italy that are asymptomatic infectives and

asymptomatic recovered from 31 January to 11 December.

10



2020-Jan 2020-Apr 2020-Jul 2020-Oct
99.4

99.5

99.6

99.7

99.8

99.9

100.0

po
pu

la
tio

n 
in

 p
er

ce
nt

ag
e

susceptible

2020-Jan 2020-Apr 2020-Jul 2020-Oct
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
symptomatic infectives

data
learned

2020-Jan 2020-Apr 2020-Jul 2020-Oct
0.00

0.01

0.02

0.03

0.04

0.05

0.06
symptomatic recovered

data
learned

(a)

2020-Mar 2020-May 2020-Jul 2020-Oct 2020-Dec
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

po
pu

la
tio

n 
in

 p
er

ce
nt

ag
e

asymptomatic infectives

2020-Mar 2020-May 2020-Jul 2020-Oct 2020-Dec
0.00

0.05

0.10

0.15

0.20

0.25

asymptomatic recovered

(b)

Figure 4: Simulation of South Korea COVID-19 data; (a) The learned symptomatic infectives and recovered population

were obtained by the EINN Algorithm 1; (b) EINN Algorithm 1 learns the cumulative population of South Korea that are

asymptomatic infectives and asymptomatic recovered from 22 January to 11 December. .
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Figure 5: Simulation of USA COVID-19 data; (a) The learned symptomatic infectives and recovered population were obtained

by the EINN Algorithm 1; (b) EINN Algorithm 1 learns the cumulative population of USA that are asymptomatic infectives

and asymptomatic recovered from 22 January to 11 December.

Parameters Mean Std

β 0.03773 0.00276

ξ 0.55699 0.07896

γ 0.01327 0.00027

µ 0.02906 0.017478

R0 2.32770 0.06014

Table 2: In Figure (3), EINN Algorithm 1 learns the constant model parameters β γ, µ, ξ, and R0 from 31 January 2020 to

11 December 2020

As shown in Figures (3)a–(5)a, early in the pandemic, the cumulative infective and recovered data

closely resemble an exponential function. Cubic Spline interpolation is used to generate 3000 training points

from the cumulative symptomatic infective and recovered data. In Tables (2)–(4) the mean and standard

deviation of the the parameters β γ, µ, ξ, and R0 are presented after 10 runs of EINN Algorithm (1)
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Parameters Mean Std

β 0.01537 0.00350

ξ 0.24862 0.04333

γ 0.00537 0.00013

µ 0.01174 0.00587

R0 1.84796 0.16187

Table 3: In Figure (4), EINN Algorithm 1 learns the constant model parameters β γ, µ, ξ, and R0 from 22 January 2020 to

11 December 2020

Parameters Mean Std

β 0.02130 0.00144

ξ 0.49176 0.06541

γ 0.00437 0.000046

µ 0.01499 0.00199

R0 3.10406 0.09609

Table 4: In Figure (5), EINN Algorithm 1 learns the constant model parameters β γ, µ, ξ, and R0 from 22 January 2020 to

11 December 2020
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3.2. Data-Driven Simulation Results for Non-Pharmaceutical Mitigation Measures

The model parameters in an epidemiology model are influenced by mitigation measures. For instance,

social distancing corresponds to reducing the transmission rate by reducing human contact. In this Section,

we simulate different levels of various non-pharmaceutical mitigation measure, and we demonstrate their

impact on R0 and the spread of COVID-19.

3.2.1. Early Detection of Infectives

Early detection of infectives population leads to higher reported infectives. This results in an early

isolation of individuals who have had contact with infective individuals. There are no reported data for

the asymptomatic infectives populations. Simulating with higher ξ increases the symptomatic infectives

population. This corresponds to higher reported cases. Simulations are presented for Italy, South Korea,

and the USA see Tables 5–7.

β γ µ βξ β(1− ξ) R0

ξ = 0.1 Mean 0.03161 0.00119 0.03125 0.00316 0.02845 4.32459

Std 0.00376 0.00047 0.02510 0.00038 0.00338 0.96941

ξ = 0.25 Mean 0.03827 0.00810 0.02418 0.00957 0.02870 2.42050

Std 0.00307 0.00122 0.00456 0.00077 0.00230 0.08582

ξ = 0.50 Mean 0.03698 0.01208 0.03253 0.01849 0.01849 2.33102

Std 0.00304 0.00152 0.02876 0.00152 0.00152 0.11068

ξ = 0.75 Mean 0.03700 0.01435 0.03027 0.02775 0.00925 2.35074

Std 0.00262 0.00122 0.01801 0.00196 0.00065 0.09155

Table 5: The learned parameters using EINN Algorithm 1 with fixed values of ξ based on Italy data from 31 January 2020

to 5 September 2020.

Higher ξ values in Tables 5–7, increase the symptomatic infectives population and reduce the asymp-

tomatic population in general. This is reflected by the increase in the βξ column and the corresponding

decrease in the β(1 − ξ) column. This means that more people will be in hospitalization/isolation. This

translates to more recovery in the symptomatic compartment. We see that the detection of early infectives

alone is not enough to mitigate an infectious disease such as COVID-19 as demonstrated in the R0 column

in Tables 5–7. It should be combined with other measures such as contact tracing of infectives.

3.2.2. Social Distancing

It is widely understood that measures such as a lockdown, social distancing, and widespread adoption

of facial coverings result in the mitigation of COVID-19. Social distancing is often the most sought-after
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β γ µ βξ β(1− ξ) R0

ξ = 0.1 Mean 0.01230 0.00179 0.00958 0.00123 0.01107 1.95802

Std 0.00172 0.00041 0.00304 0.00017 0.00155 0.15387

ξ = 0.25 Mean 0.01326 0.00615 0.00792 0.00332 0.00995 1.83806

Std 0.00101 0.00118 0.00148 0.00025 0.00076 0.11778

ξ = 0.50 Mean 0.01499 0.01222 0.00754 0.00749 0.00749 1.73132

Std 0.00217 0.00156 0.00269 0.00109 0.00109 0.22998

ξ = 0.75 Mean 0.01195 0.01537 0.00318 0.00896 0.00299 1.64407

Std 0.00186 0.00226 0.00224 0.00139 0.00047 0.28103

Table 6: The learned parameters using EINN Algorithm 1 with fixed values of ξ based on South Korea data from 22 January

2020 to 5 September 2020.

β γ µ βξ β(1− ξ) R0

ξ = 0.25 Mean 0.02270 0.00224 0.01471 0.00568 0.01703 3.83612

Std 0.00143 0.00056 0.00119 0.00036 0.00108 0.53227

ξ = 0.50 Mean 0.02126 0.00419 0.01639 0.01063 0.01063 3.20680

Std 0.00071 0.00032 0.00239 0.00036 0.00036 0.13379

ξ = 0.75 Mean 0.02009 0.00514 0.02039 0.01507 0.00502 3.18964

Std 0.00083 0.00026 0.00465 0.00062 0.00021 0.09912

Table 7: The learned parameters using EINN Algorithm 1 with fixed values of ξ based on USA data from 22 January 2020

to 5 September 2020.
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measure at reducing the R0. The goal of social distancing is to reduce the average number of human

contacts. This is demonstrated by reducing β, the transmission rate [16]. The impact of social distancing

on the R0 is presented in the following Tables 8–10.

γ ξ µ βξ β(1− ξ) R0

β = 0.1 Mean 0.01371 0.69461 0.36808 0.06946 0.03054 5.15392

Std 0.00020 0.04506 0.07684 0.00451 0.00451 0.24303

β = 0.05 Mean 0.01361 0.55675 0.30860 0.02784 0.02216 2.11654

Std 0.00000 0.00000 0.14114 0.00000 0.00000 0.00000

β = 0.025 Mean 0.01163 0.54429 0.021192 0.01361 0.01139 1.81348

Std 0.00032 0.09003 0.01164 0.00225 0.00225 0.45399

Table 8: The learned parameters using EINN Algorithm 1 with fixed values of β based on Italy data from 31 January 2020

to 5 September 2020

γ ξ µ βξ β(1− ξ) R0

β = 0.05 Mean 0.00571 0.64985 0.16848 0.03249 0.01751 7.69632

Std 0.00229 0.18684 0.03398 0.00934 0.00934 4.61209

β = 0.025 Mean 0.00539 0.30717 0.03705 0.00768 0.01732 1.90597

Std 0.00000 0.00000 0.01178 0.00000 0.00000 0.00000

β = 0.01 Mean 0.00285 0.09468 0.00819 0.00095 0.00905 1.37149

Std 0.00103 0.07145 0.002224 0.00071 0.00071 0.48262

Table 9: The learned parameters using EINN Algorithm 1 with fixed values of β based on South Korea data from 22 January

2020 to 5 September 2020

Reducing β in Tables 8–10 correspond to a reduced symptomatic infectives population I. There is an

increase in the asymptomatic infectives population J . Social distancing is effective when the asymptomatic

infective population J diminishes. βξ and β(1− ξ) both decreases. Social distancing should be combined

with contact tracing and early detection of infectives population.

3.2.3. Contact Tracing of Infectives

Contact tracing is equivalent to increasing the symptomatic recovery and asymptomatic recovery rates

[16]. However, since we do not have reported data for the asymptomatic population, in this paper, we

pursue contact tracing as an increase in the symptomatic recovery rate. This is equivalent to reducing the
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γ ξ µ βξ β(1− ξ) R0

β = 0.05 Mean 0.00398 0.32026 0.64670 0.01601 0.03399 4.53989

Std 0.00115 0.05013 0.17882 0.00251 0.00251 1.61048

β = 0.025 Mean 0.00458 0.85867 0.03475 0.02147 0.00353 3.34950

Std 0.00048 1.22557 0.01843 0.03064 0.03064 1.52165

β = 0.01 Mean 0.00314 0.59924 0.00532 0.00599 0.00401 3.52616

Std 0.00009 0.21138 0.00613 0.00211 0.00211 1.52799

Table 10: The learned parameters using EINN Algorithm 1 with fixed values of β based on USA data from 22 January 2020

to 5 September 2020

number of days an infective individual stays infective. In Tables 11–13, the impact of contact tracing is

demonstrated by increasing the symptomatic recovery rate.

β ξ µ βξ β(1− ξ) R0

γ = 0.001 Mean 0.03235 0.37063 0.02157 0.01208 0.02027 13.05386

Std 0.00251 0.05151 0.00443 0.00245 0.00127 2.29273

γ = 0.005 Mean 0.03386 0.43284 0.02479 0.01484 0.01902 3.86667

Std 0.00372 0.08534 0.01229 0.00406 0.00258 0.50726

γ = 0.01 Mean 0.03564 0.49312 0.02306 0.01771 0.01793 2.62805

Std 0.00332 0.07613 0.00791 0.00373 0.00216 0.12344

γ = 0.05 Mean 0.04573 0.85962 0.01113 0.03924 0.00649 1.36939

Std 0.00223 0.06479 0.00436 0.00270 0.00319 0.09824

Table 11: The learned parameters using EINN Algorithm 1 with fixed values of γ based on Italy data from 31 January 2020

to 5 September 2020

The raising of γ in Tables 11–13, increases the symptomatic infectives population I which is demon-

strated in increased ξ and increased β. β(1−ξ) decreases while βξ increases. This also results in a reduced

R0. Contact tracing is an efficient mitigation measure in lowering the spread of COVID-19.

3.3. Data-Driven Simulation Results for Vaccination Efficacy

The mitigation measures described in Section 3.2 are non-pharmaceutical measures. In this Section,

we discuss vaccination. In the fight against COVID-19, countries such as USA and United Kingdom began

to vaccinate in December 2020. A major goal of vaccination is to reduce the susceptible population, i.e.,
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β ξ µ βξ β(1− ξ) R0

γ = 0.001 Mean 0.01274 0.17877 0.00811 0.00225 0.01049 3.59469

Std 0.00161 0.02628 0.00199 0.00027 0.00153 0.19821

γ = 0.005 Mean 0.01386 0.24278 0.00890 0.00335 0.01051 1.90717

Std 0.00157 0.02331 0.00261 0.00039 0.00134 0.17414

γ = 0.01 Mean 0.01410 0.27970 0.00841 0.00399 0.01012 1.74857

Std 0.00239 0.02634 0.00350 0.00097 0.00149 0.30925

γ = 0.05 Mean 0.01804 0.69863 0.00552 0.01269 0.00534 1.31972

Std 0.00309 0.08219 0.00234 0.00311 0.00137 0.27368

Table 12: The learned parameters using EINN Algorithm 1 with fixed values of γ based on South Korea data from 22 January

2020 to 5 September 2020

β ξ µ βξ β(1− ξ) R0

γ = 0.001 Mean 0.02089 0.38780 0.01533 0.00808 0.01281 8.92979

Std 0.00091 0.04234 0.00219 0.00073 0.00127 0.60324

γ = 0.005 Mean 0.02121 0.50579 0.01446 0.01071 0.01049 2.88515

Std 0.00105 0.04284 0.00240 0.00084 0.00120 0.07506

γ = 0.01 Mean 0.02334 0.56126 0.01437 0.01308 0.01026 2.02548

Std 0.00087 0.03675 0.00156 0.00069 0.00117 0.02210

Table 13: The learned parameters using EINN Algorithm 1 with fixed values of γ based on USA data from 22 January 2020

to 5 September 2020
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people recover without becoming infected. This constitutes a pharmaceutical mitigation measure. We

considered the vaccination data for the USA and the United Kingdom, and simulate the effectiveness

of vaccination on the daily reported infectives. A hybrid neural network is used to simulate an efficient

vaccination strategy in [38]. We show that the implementation of Algorithm 1 for the asymptomatic-SIR

model (1), we can demonstrate the efficacy of vaccination in combination with some mitigation measures.

In Figure 6 we present a simulation of the effectiveness of vaccination in combination with an increase in

social distancing in the USA and in the United Kingdom.
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Figure 6: Vaccination efficacy

We used the USA projection of 1, 000, 000 daily vaccination. In the case of the magenta curve, we

learned κ using the daily vaccination data. The first reported case was 01/22/2020, Vaccination data were

first reported on 19 December 2020. In 6(a) the model is extrapolated for 2 cases. The red curve is the case

of no vaccination, here κ = 0. In the magenta curve, we learned κ using the daily vaccination data. The

first reported case was on 31 January 2020, Vaccination data were first reported on 13 December 2020. The

effectiveness of vaccination is demonstrated by learning the pre-vaccination and post-vaccination epidemi-

ology parameters using smooth daily reported infectious data from the USA. In 6(b) the effectiveness of

vaccination is demonstrated by learning the pre-vaccination and post-vaccination epidemiology parameters

using smooth daily reported infectives data from the United Kingdom.
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3.4. Data-Driven Simulation Results for Time-Varying Transmission Rate

In the EINN Algorithm 2, Mβ corresponds to the number of days mitigation is delayed in the data,

which is equal to K in Equation (4). Mκ is the number of vaccination days. In Figures 7(a) and 7(b),

time-varying transmission rates learned by the EINN Algorithm 2.
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Figure 7: Delayed-mitigation exponential time-varying rates.

In Figure 7(a) A learned delayed-mitigation exponential time-varying transmission rate β is plotted

for cumulative Italy COVID-19 data from January 31, 2020 to December 11, 2020. N = 60.36× 106. The

plotted time-varying basic reproduction rateRt shows the impact of lockdown and the mitigation measures

post-lockdown. The relaxation that followed is due to the COVID-19 surge and is detected in the learned

β and Rt. The EINN Algorithm 2 also learns γ = 0.0121 and µ = 0.0106. The MSE in (I) is 7.5× 10−5.

In Figure 7(b) A learned delayed-mitigation exponential time-varying transmission rate β is plotted for

cumulative U.S.A COVID-19 data from 22 January 2020 to December 11, 2020. N = 328.2×106. The time-

varying basic reproduction rate Rt is underestimated pre-lockdown. The EINN Algorithm 2 also learns

γ = 0.001 and µ = 0.0224. The MSE in (I) is 3.88 × 10−4. In 7(a) The delayed-mitigation exponential

transmission rate is learned using Equation (4) in Equation (1). We set K = 40 and we and fix ξ = 0.37

in EINN Algorithm 2. We take β0 = 0.22, obtained using early data and nonlinear regression. EINN

Algorithm 2 learns η = 0.87, the rate at which human contact decreases. In 7(b) The delayed-mitigation

exponential transmission rate is learned using Equation (4) in Equation (1). We set K = 57 and we fix
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ξ = 0.46 in EINN Algorithm 2. We take β0 = 0.279, obtained using early data and nonlinear regression.

EINN Algorithm 2 learns η = 0.60, the rate at which human contact decreases.

3.5. Data-Driven Simulation for Piecewise Transmission Rate

In the EINN Algorithm 3, Mi, 1 ≤ i ≤ n are chosen to corresponds to a partitioning in the data.

Time-varying transmission rates learned by the EINN Algorithm 3 are presented in Figures 8(a) and 7(b).

For Italy and USA data, we used the following formulation for β(t) in Algorithm 3

β(t) =



β0q1 0 ≤ tj ≤ 20

β0q2 20 < tj ≤ 35

β0q3 35 < tj ≤ 100

β0q4 100 < t.

(11)

Parameters Mean Std

γ 0.00459 0.00013

µ 0.01202 0.00238

q2 0.29297 0.17053

q3 0.53369 0.16459

q4 0.49833 0.07585

Table 14: Setting q1 = 1, EINN Algorithm 3 learns q2, q3, and q4 for Italy data from 31 January 2020 to 11 December 2020

Parameters Mean Std

γ 0.01338 0.00062

µ 0.01700 0.00704

q2 0.73672 0.19446

q3 0.84209 0.16659

q4 0.84166 0.09445

Table 15: Setting q1 = 1, EINN Algorithm 3 learns q2, q3, and q4 for USA data from 31 January 2020 to 11 December 2020

4. Discussion

4.1. Mitigation Measures

The COVID-19 infectious population surge witnessed in March and April 2020 around the world forced

many countries to institute strict lockdown measures. This was largely successful in reducing the R0 in
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Figure 8: Piecewise-constant time-varying rates.

many countries, unfortunately, it also resulted in economic hardship, such that we seek other measures

that also reduce the R0 to a number less than 1. In recent months, the measures that are promoted in

most countries include contact tracing, social distancing, and facial covering. The epidemiological meaning

of each of the model parameters in Equation (1) including ξ are presented in Sections 3.2.1–3.2.3.

4.2. Vaccination Efficacy

In Figure 6(b), using USA data, the mitigation effect of vaccination on the daily infectives is demon-

strated. Implementing Algorithm 1, we obtained κ = 0.00184, which is slightly different from the projection

of κ = 0.00305, corresponding to 1 million people vaccinated per day. In Figure 6(a), using United King-

dom data, we simulate the impact of vaccination on the daily reported infectives, using a smoothed daily

vaccination data from 13 December 2020 to 5 February 2020 and smoothed daily reported infectives data.

We implement Algorithm 1 and we obtained κ = 0.00305. We demonstrate the impact of increased social

distancing together with the vaccination effort. Social distancing corresponds to decreasing the transmis-

sion rate β. Increased social distancing reduces the daily reported infectives but it extends the number of

days daily infectives data is significant.

4.3. Time-Varying Transmission Rate

In Section 3.4, the delayed-mitigation exponential time-varying transmission rate detects the impact

of 2020 COVID-19 lockdown, as well as the other mitigation measures post-lockdown using the parameter
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η. It is however difficult to know if η captures all the pattern in the time-varying transmission rate as

demonstrated in Figure 7a,b, i.e., whether or not Equation (4) helps us to learn the most accurate form of

β. For instance, the time-varying basic reproduction rate Rt is underestimated pre-lockdown in the USA

data and overestimated pre-lockdown in Italy data.

4.4. Error Metrics for Data-Driven Simulation

The performance of the neural network training is demonstrated in Table 16, where the random and

shuffle splits [39] has been used to generate the training and testing dataset. The random split performed

better than the shuffle split. In Figure 9, we present the training and testing MSE at different epochs,

depths and widths. We observe that it is more beneficial to increase the width before increasing the

depth [40].

Data Split R2 score MSE MAE Max Error

Random split 9.9994× 10−1 3.9365× 10−4 1.2440× 10−2 6.6720× 10−2

Shuffle split 9.2104× 10−1 4.4006× 10−1 4.9789× 10−1 1.3683× 100

Table 16: Error metrics for the infected cases (I) using the random and shuffle splits for Italy COVID data, where we use

40% of the dataset for testing.
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Figure 9: Training and testing Errors in EINN for Italy data

5. Conclusions

We have presented a data-driven deep-learning algorithm that discovers transmission rate patterns in

an epidemiology model using cumulative and daily reported symptomatic infective and recovered data. The
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algorithm predicts asymptomatic infectives and asymptomatic recovered populations. The asymptomatic

population is usually unreported in the publicly available data. We learn this population from symptomatic

population data. It is demonstrated that a time-varying function models the nonlinear transmission rate.

The EINN algorithms presented, learns the nonlinear time-varying transmission rate without a pre-assumed

pattern. This approach is useful when the dynamics of an epidemiological model is impacted by various

mitigation measures. The algorithm can be adapted to most epidemiology models.

In the proposed model, we have demonstrated the impact of public health actions on the transmission

of COVID-19. The effect of pharmaceutical mitigation measures such as vaccination is presented. Non-

pharmaceutical mitigation measures such as early detection of symptomatic infectives population, contact

tracing, and social distancing are promoted by showing their impact on the spread of COVID-19. This

study is useful in the event of a pandemic such as COVID-19, where governmental interventions and public

response and perceptions interfere in the interaction of the compartments in an epidemiology model.
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Appendix A. EINN Algorithm for Constant Transmission Rates

We present the EINN Algorithm 1 for the asymptomatic-SIR model with constant parameters. That is,

in Equation (1), we set β(t) = β. The learned cumulative infectives and the recovered solution is matched

against the cumulative infectives and recovered data. In this algorithm, the parameters represent average

rates. We implement Algorithm 1 using publicly available COVID-19 data [32].

Algorithm 1 EINN algorithm for Asymptomatic-SIR model with constant parameters

1: Construct EINN

specify the input: tj , j = 1, . . . ,M

Initialize EINN parameter: θ

Initialize the epidemiology and vaccination parameters: λ = [β, γ, µ, ξ, κ]

Output layer: S(tj ; θ;λ), I(tj ; θ;λ), J(tj ; θ;λ), R(tj ; θ;λ), U(tj ; θ;λ), j = 1, . . . ,M .

2: Specify the training set

Training data: using cubic spline, generate Ĩ(tj), R̃(tj), j = 1, . . . ,M and Ṽ (tj), j = 1, . . . ,Mκ.

from given dataset.

Initialize the Asymptomatic population: J̃(0) = (1− ξ)Ĩ(0)/ξ and Ũ(0) = (1− ξ)R̃(0)/ξ.

3: Train the neural network

Specify an MSE loss function:

MSE =
1

M

M∑
j=1

||I(tj ; θ;λ)− Ĩ(tj)||22 +
1

M

M∑
j=1

||R(tj ; θ;λ)− R̃(tj)||22

+
1

Mκ

Mκ∑
j=1

||κS(tj ; θ;λ)− Ṽ (tj)||22

+ ||J(0; θ;λ)− J̃(0)||22 + ||U(0; θ;λ)− Ũ(0)||22

+
1

M

6∑
i=1

M∑
j=1

||Li(tj ; θ;λ)||22.

(A.1)

Minimize the MSE loss function: compute arg min
{θ;λ}

(MSE) using an optimizer such as the adam

optimizer.

4: return EINN solution

S(tj ; θ;λ), I(tj ; θ;λ), J(tj ; θ;λ), R(tj ; θ;λ), U(tj ; θ;λ), j = 1, . . . ,M .

parameters: β, γ, µ, ξ, κ.
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Appendix B. EINN Algorithm for Time-Varying Transmission Rate

The time-varying transmission rate is non-constant in the presence of mitigation measures in the

cumulative infective data. In [17, 4], it was shown that during the early phase of the COVID-19 pandemic

when the cumulative infection population grew exponentially, the transmission rate was constant. This

coincides with the period before any mitigation measure. Incorporating measures such as social distancing,

lockdown and widespread adoption of facial covering in an epidemiology model is complex. We learn an

exponentially decreasing transmission rate, we see that it takes the form of Equation (4). Our approach

also detects various other post-lockdown mitigation measures. We use EINN Algorithm 2 to learn β(t).

Algorithm 2 EINN algorithm for Asymptomatic-SIR model with delayed-mitigation exponential

time-varying transmission rate

1: Construct EINN

specify the input: tj , j = 1, . . . ,M

Initialize EINN parameter: θ

Initialize the epidemiology and vaccination parameters: λ = [γ, µ, κ]

Output layer: S(tj ; θ;λ), I(tj ; θ;λ), J(tj ; θ;λ), R(tj ; θ;λ), U(tj ; θ;λ), j = 1, . . . ,M

2: construct neural network: β

specify the input: tj , j = 1, . . . ,M

Initialize the neural network parameter: φ

Specify β0 obtained by nonlinear regression of early cumulative infective population data

Initialize the exponential decay parameter: η

Output layer: β(tj ;φ; η)

β(tj ;φ; η) =

β0 0 ≤ tj ≤Mβ

β0 exp (−ηβ(tj ;φ; η)) Mβ < tj ,

(B.1)

3: Specify EINN training set

Training data: using cubic spline, generate Ĩ(tj) and R̃(tj), j = 1, . . . ,M .

Set ξ to the value obtained for ξ from EINN Algorithm 1

Initialize the Asymptomatic population: J̃(0) = (1− ξ)Ĩ(0)/ξ and Ũ(0) = (1− ξ)R̃(0)/ξ.

4: Train the neural networks
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Specify an MSE loss function:

MSE =
1

M

M∑
j=1

||I(tj ; θ;λ)− Ĩ(tj)||22 +
1

M

M∑
j=1

||R(tj ; θ;λ)− R̃(tj)||22

+
1

Mβ

Mβ∑
j=1

||β(tj ;φ; η)− β0||22

+
1

Mκ

Mκ∑
j=1

||κS(tj ; θ)− Ṽ (tj)||22

+ ||J(0; θ;λ)− J̃(0)||22 + ||U(0; θ;λ)− Ũ(0)||22

+
1

M

6∑
i=1

M∑
j=1

||Li(tj ; θ;φ;λ; η)||22.

(B.2)

Minimize the MSE loss function: compute arg min
{θ;φ;λ;η}

(MSE) using an optimizer such as the adam

optimizer.

5: return EINN solution

S(tj ; θ;λ), I(tj ; θ;λ), J(tj ; θ;λ), R(tj ; θ;λ), U(tj ; θ;λ), j = 1, . . . ,M .

epidemiology parameters: γ and µ

vaccination parameter: κ

6: return time-varying epidemiology parameter:

β(tj ;φ; η), j = 1, . . . ,M .

Rate of human contact decrease: η.
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Appendix C. EINN Algorithm for Piecewise time-varying transmission rate

A piecewise time-varying transmission rate (3) is used to learn a time-dependent transmission rate β

in eq. (1).

Algorithm 3 EINN algorithm for Asymptomatic-SIR model with piecewise time-varying transmission

rate

1: Construct EINN

specify the input: tj , j = 1, . . . ,M

Initialize EINN parameter: θ

Initialize the epidemiology and vaccination parameters: λ = [γ, µ, κ]

Output layer: S(tj ; θ;λ), I(tj ; θ;λ), J(tj ; θ;λ), R(tj ; θ;λ), U(tj ; θ;λ), j = 1, . . . ,M

2: construct neural network: β

specify the input: tj , j = 1, . . . ,M

Initialize the neural network parameter: φ

Specify β0 obtained by nonlinear regression of early cumulative infective population data

Initialize the decay parameters: q1, q2, q3, q4, . . . , qn

Output layer: β(tj ;φ; q1, q2, q3, q4, . . . , qn)

β(tj ;φ; q1, q2, q3, q4, . . . , qn) =



β0q1β(tj ;φ; q1) 0 ≤ tj ≤M1

β0q2β(tj ;φ; q2) M1 < tj ≤M2

β0q3β(tj ;φ; q3) M2 < tj ≤M3

β0q4β(tj ;φ; q4) M3 < tj ≤M4

...

β0qnβ(tj ;φ; qn) Mn < tj ,

(C.1)

3: Specify EINN training set

Training data: using cubic spline, generate Ĩ(tj) and R̃(tj), j = 1, . . . ,M .

Set ξ to the value obtained for ξ from EINN Algorithm 1

Initialize the Asymptomatic population: J̃(0) = (1− ξ)Ĩ(0)/ξ and Ũ(0) = (1− ξ)R̃(0)/ξ.

4: Train the neural networks
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Specify an MSE loss function:

MSE =
1

M

M∑
j=1

||I(tj ; θ;λ)− Ĩ(tj)||22 +
1

M

M∑
j=1

||R(tj ; θ;λ)− R̃(tj)||22

+

n∑
i=1

1

Mi

Mi∑
j=1

||β(tj ;φ; η)− β0||22

+
1

Mκ

Mκ∑
j=1

||κS(tj ; θ)− Ṽ (tj)||22

+ ||J(0; θ;λ)− J̃(0)||22 + ||U(0; θ;λ)− Ũ(0)||22

+
1

M

6∑
i=1

M∑
j=1

||Li(tj ; θ;φ;λ; η)||22.

(C.2)

Minimize the MSE loss function: compute arg min
{θ;φ;λ;η}

(MSE) using an optimizer such as the adam

optimizer.

5: return EINN solution

S(tj ; θ;λ), I(tj ; θ;λ), J(tj ; θ;λ), R(tj ; θ;λ), U(tj ; θ;λ), j = 1, . . . ,M .

epidemiology parameters: γ and µ

vaccination parameter: κ

6: return time-varying epidemiology parameter:

β(tj ;φ; q1, q2, q3, q4, . . . , qn), j = 1, . . . ,M .

Rate of human contact decrease: q1, q2, q3, q4, . . . , qn.

References

[1] World Health Organization (WHO), Archived: WHO Timeline-COVID-19, https://www.who.int/

news/item/27-04-2020-who-timeline--covid-19 (Accessed: 2021-08-12).

[2] Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. Musa, M. Wang, Y. Cai, W. Wang, L. Yang, D. He,

A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with

individual reaction and governmental action, International journal of Infectious diseases 93 (2020)

211–216. doi:10.1016/j.ijid.2020.02.058.

[3] K. Tam, N. Walker, J. Moreno, Effect of mitigation measures on the spreading of COVID-19 in hard-

hit states in the U.S., PLoS Computational Biology 15 (11) (2020) e0240877. doi:10.1371/journal.

pcbi.0240877.

[4] Z. Liu, P. Magal, O. Seydi, G. Webb, Understanding unreported cases in the COVID-19 epidemic

outbreak in Wuhan, China, and the importance of major public health interventions, biology 9 (3).

doi:10.3390/biology9030050.

29

https://www.who.int/news/item/27-04-2020-who-timeline--covid-19
https://www.who.int/news/item/27-04-2020-who-timeline--covid-19
http://dx.doi.org/10.1016/j.ijid.2020.02.058
http://dx.doi.org/10.1371/journal.pcbi.0240877
http://dx.doi.org/10.1371/journal.pcbi.0240877
http://dx.doi.org/10.3390/biology9030050


[5] A. Neves, G. Guerrero, Predicting the evolution of the COVID epidemic with the A-SIR model

Lombardy, Italy and Sao paulo state Brazil, Physica D 413 (2020) 132693.

[6] S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, E. Kostelich, A. B.

Gummel, To mask or not to mask: Modeling the potential for the face mask use by the general

public to curtail the COVID-19 pandemic, Infectious Disease Modelling 5 (2020) 293–308. doi:

10.1016/j.idm.2020.04.001.

[7] V. Chimula, L. Zhang, Time series forecasting of COVID-19 transmission in canada using lstm net-

works, Chaos Solitons Fractals 135 (2020) 109864.

[8] M. Jagan, M. S. deJonge, O. Krylova, D. J. Earn, Fast estimation of time-varying infectious disease

transmission rates, PLoS Computational Biology 16 (9) (2020) e1008124. doi:10.1371/journal.

pcbi.1008124.

[9] L. Magri, N. A. K. Doan, First-principles machine learning modelling of COVID-19, arXiv

preprintarXiv:2004.09478v1.

[10] Our pandemic year—a covid-19 timeline, https://www.yalemedicine.org/news/covid-timeline

(Accessed: 2021-09-04).

[11] B. Tepekule, A. Hauser, V. Kachalov, S. Andressen, T. Scheier, P. Schreiber, et al, Assessing the

potential impact of transmission during prolonged viral shedding on the effect of lockdown relaxation

on COVID-19, PLoS Computational Biology 17 (1) (2021) e1008609. doi:10.1371/journal.pcbi.

1008609.

[12] C. Ogwara, A. Mallhi, X. Hua, K. Muniz-Rodriguez, J. Schwind, X. Zhou, J. Jones, J. Chopak-Foss,

G. Chowell, I. Fung, Spatially refined time-varying reproduction numbers of covid-19 by health district

in georgia, usa, march–december 2020, Epidemiologia 2 (2020) 179–197.

[13] W. Kermack, A. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings

of the Royal Soceity A: Mathematical, Physical and Engineering Sciences 115 (1921) 700 – 721.

[14] L. Stolerman, D. Coombs, S. Boatto, SIR-Network model and its application to dengue fever, SIAM

Journal on Applied Mathematics 75 (6) (2015) 2581–2609. doi:10.1137/140996148.

[15] P. Magal, G. Webb, Y. Wu, On the basic reproduction number of reaction-diffusion epidemic models,

SIAM Journal on Applied Mathematics 79 (1) (2019) 284–304.

[16] G. Gaeta, A simple SIR model with a large set of asymptomatic infectives, Mathematics in Engineering

3 (2) (2021) 1–39. doi:10.3934/mine.2021013.

30

http://dx.doi.org/10.1016/j.idm.2020.04.001
http://dx.doi.org/10.1016/j.idm.2020.04.001
http://dx.doi.org/10.1371/journal.pcbi.1008124
http://dx.doi.org/10.1371/journal.pcbi.1008124
http://arxiv.org/abs/2004.09478v1
https://www.yalemedicine.org/news/covid-timeline
http://dx.doi.org/10.1371/journal.pcbi.1008609
http://dx.doi.org/10.1371/journal.pcbi.1008609
http://dx.doi.org/10.1137/140996148
http://dx.doi.org/10.3934/mine.2021013


[17] Z. Liu, P. Magal, O. Seydi, G. Webb, Predicting the cumulative number of cases for the COVID-19

epidemic in China from early data, Mathematical Biosciences and Engineering 17 (4) (2020) 3040–

3051. doi:10.3934/mbe.2020172.

[18] X. He, E. H. Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan,

X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong, Y. Wu, L. Zhao, F. Zhang, B. J.

Cowling, F. Li, G. M. Leung, Temporal dynamics in viral shedding and transmissibility of COVID-19,

Nature Medicine 26 (2020) 672–675. doi:10.1038/s41591-020-0869-5.

[19] Centers for Disease Control and Prevention (CDC), COVID-19 pandemic planning scenarios, https:

//www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html (Accessed: 2020-12-11).

[20] Q.-X. Long, X.-J. Tang, Q.-L. Shi, Q. Li, H.-J. Deng, J. Yuan, J. Hu, W. Xu, Y. Zhang, F. Lv, Clinical

and immunological assessment of asymtomatic sars-cov-2 infections., Nat. Med. 26 (2020) 1200–1204.

[21] D. Oran, E. Topol, The proportion of sars-cov-2 infections that are asymptomatic., Ann. Intern. Med.

174 (2021) 655–662.

[22] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444. doi:10.1038/

nature14539.

[23] G. Cybenko, Approximation by superposition of a sigmoidal function, Mathematics of control, signals

and systems.

[24] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4 (2)

(1991) 251–257.

[25] W. Liang, J. Yao, A. Chen, et al, Early triage of critically ill COVID-19 patients using deep learning,

Nature Communications 11 (2020) 3543. doi:10.1038/s41467-020-17280-8.

[26] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics informed deep learning: A deep learning frame-

work for solving forward and inverse problems involving nonlinear partial differential equations, Jour-

nal of Computational Physics 378 (2019) 686–707.

[27] M. Raissi, N. Ramezani, P. Seshaiyer, On parameter estimation approaches for predicting dis-

ease transmission through optimization, deep learning and statistical inference methods, Letters in

Biomathematics 6 (2) (2019) 1–26.

[28] M. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics: Learning velocity and pressure

fields from flow visualizations, Science 367 (2020) 1026–1030. doi:10.1126/science.aaw4741.

31

http://dx.doi.org/10.3934/mbe.2020172
http://dx.doi.org/10.1038/s41591-020-0869-5
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/s41467-020-17280-8
http://dx.doi.org/10.1126/science.aaw4741


[29] A. Yazdani, L. Lu, M. Raissi, G. E. Karniadakis, Systems biology informed deep learning for inferring

parameters and hidden dynamics, PLoS Computational Biology 16 (11) (2020) e1007575. doi:10.

1371/journal.pcbi.1007575.

[30] E. Kharazmi, M. Cai, X. Zheng, G. Lin, G. E. Karniadakis, Identifiability and predictability of integer-

and fractional-order epidemiological models using physics-informed neural networks, medRxiv.

[31] J. Long, A. Khaliq, K. Furati, Identification and prediction of time-varying parameters of COVID-19

model: a data-driven deep learning approach, International Journal of Computer Mathematics 98

(2021) 1617–1632.

[32] E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time.,

Lancet Infect. Dis. 20 (2020) 533–534.

[33] D. He, J. Dushoff, T. Day, J. Ma, D. Earn, Inferring the causes of the three waves of the 1918 influenza

pandemic in england and wales, Proc. R. Soc. 280 (2013) 20131345.

[34] K. Olumoyin, A. Khaliq, K. Furati, Data-driven deep-learning algorithm for asymptomatic covid-19

model with varying mitigation measures and transmission rate, Epidemiologia 2 (2021) 471–489.

[35] P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compart-

mental models of disease transmission, Mathematical Biosciences 180 (2002) 29–48.

[36] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, 2016.

[37] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980[cs.LG].

[38] T. K. Torku, A. Q. M. Khaliq, K. M. Furati, Deep-data-driven neural networks for covid-19 vaccine

efficacy, Epidemiologia 2 (4) (2021) 564–586.

[39] F. Chollet, Deep Learning with Python, Manning, 2017.

[40] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, J. Sohl-Dickstein, Deep neural networks

as gaussian processes, arxiv:1711.00165.

32

http://dx.doi.org/10.1371/journal.pcbi.1007575
http://dx.doi.org/10.1371/journal.pcbi.1007575

	1 Introduction
	2 Materials and Methods
	2.1 Asymptomatic-SIR Model
	2.2 Time-Varying Transmission Rate
	2.3 Neural Network Structure
	2.3.1 Feedforward Neural Network (FNN)
	2.3.2 Epidemiology-Informed Neural Network (EINN)


	3 Results
	3.1 Data-Driven Simulation Results for Constant Transmission Rates
	3.2 Data-Driven Simulation Results for Non-Pharmaceutical Mitigation Measures
	3.2.1 Early Detection of Infectives
	3.2.2 Social Distancing
	3.2.3 Contact Tracing of Infectives

	3.3 Data-Driven Simulation Results for Vaccination Efficacy
	3.4 Data-Driven Simulation Results for Time-Varying Transmission Rate
	3.5 Data-Driven Simulation for Piecewise Transmission Rate

	4 Discussion
	4.1 Mitigation Measures
	4.2 Vaccination Efficacy
	4.3 Time-Varying Transmission Rate
	4.4 Error Metrics for Data-Driven Simulation

	5 Conclusions
	Appendix  A EINN Algorithm for Constant Transmission Rates
	Appendix  B EINN Algorithm for Time-Varying Transmission Rate
	Appendix  C EINN Algorithm for Piecewise time-varying transmission rate

